These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32990813)

  • 1. Heme-binding ability of bovine milk proteins.
    Orino K
    Biometals; 2020 Dec; 33(6):287-291. PubMed ID: 32990813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-dependent binding of bovine milk α-casein with holo-lactoferrin, but not holo-transferrin.
    Shibuya N; Yoshikawa Y; Watanabe K; Ohtsuka H; Orino K
    Biometals; 2012 Oct; 25(5):1083-8. PubMed ID: 22824971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme-binding of bovine lactoferrin: the potential presence of a heme-binding capacity in an ancestral transferrin gene.
    Saito N; Iio T; Yoshikawa Y; Ohtsuka H; Orino K
    Biometals; 2018 Feb; 31(1):131-138. PubMed ID: 29285662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans.
    Mieno A; Yamamoto Y; Yoshikawa Y; Watanabe K; Mukai T; Orino K
    J Vet Med Sci; 2013; 75(8):1101-5. PubMed ID: 23545463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme-mediated binding of α-casein to ferritin: evidence for preferential α-casein binding to ferrous iron.
    Usami A; Tanaka M; Yoshikawa Y; Watanabe K; Ohtsuka H; Orino K
    Biometals; 2011 Dec; 24(6):1217-24. PubMed ID: 21732136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro heme and non-heme iron capture from hemoglobin, myoglobin and ferritin by bovine lactoferrin and implications for suppression of reactive oxygen species in vivo.
    Jegasothy H; Weerakkody R; Selby-Pham S; Bennett LE
    Biometals; 2014 Dec; 27(6):1371-82. PubMed ID: 25280951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns.
    Chatterton DE; Nguyen DN; Bering SB; Sangild PT
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1730-47. PubMed ID: 23660296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability of zinc and its binding to casein in milks and formulas.
    Pabón ML; Lönnerdal B
    J Trace Elem Med Biol; 2000 Oct; 14(3):146-53. PubMed ID: 11130851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of zinc to bovine and human milk proteins.
    Singh H; Flynn A; Fox PF
    J Dairy Res; 1989 May; 56(2):235-48. PubMed ID: 2760297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic quantification of disulfide-linked polymers in raw and heated bovine milk.
    Chevalier F; Kelly AL
    J Agric Food Chem; 2010 Jun; 58(12):7437-44. PubMed ID: 20504025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal variations in composition, properties, and heat-induced changes in bovine milk in a seasonal calving system.
    Li S; Ye A; Singh H
    J Dairy Sci; 2019 Sep; 102(9):7747-7759. PubMed ID: 31326173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of a monoclonal antibody to bovine kappa-casein.
    Feng ZK; Cunningham-Rundles C
    Hybridoma; 1989 Apr; 8(2):223-30. PubMed ID: 2714815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of zinc to casein.
    Harzer G; Kauer H
    Am J Clin Nutr; 1982 May; 35(5):981-7. PubMed ID: 7081095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of casein micelles with calcium phosphate particles.
    Tercinier L; Ye A; Anema SG; Singh A; Singh H
    J Agric Food Chem; 2014 Jun; 62(25):5983-92. PubMed ID: 24896851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ability of lactoferrin to promote the growth of Bifidobacterium spp. in vitro is independent of receptor binding capacity and iron saturation level.
    Petschow BW; Talbott RD; Batema RP
    J Med Microbiol; 1999 Jun; 48(6):541-549. PubMed ID: 10359303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of lactoferrin and lysozyme with casein micelles.
    Anema SG; de Kruif CG
    Biomacromolecules; 2011 Nov; 12(11):3970-6. PubMed ID: 21932853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of lactoferrin in the proper development of newborns].
    Artym J; Zimecki M
    Postepy Hig Med Dosw (Online); 2005; 59():421-32. PubMed ID: 16106243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colostral and mature breast milk protein compositional determinants in Qingdao, Wuhan and Hohhot: maternal food culture, vaginal delivery and neonatal gender.
    Liu B; Gu F; Ye W; Ren Y; Guo S
    Asia Pac J Clin Nutr; 2019; 28(4):800-811. PubMed ID: 31826378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic comparison of equine and bovine milks on renneting.
    Uniacke-Lowe T; Chevalier F; Hem S; Fox PF; Mulvihill DM
    J Agric Food Chem; 2013 Mar; 61(11):2839-50. PubMed ID: 23414207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of ions and hydrophobic probes to alpha-lactalbumin and kappa-casein as determined by analytical affinity chromatography.
    Fitzgerald RJ; Swaisgood HE
    Arch Biochem Biophys; 1989 Jan; 268(1):239-48. PubMed ID: 2912378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.