These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 32990874)
21. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Lian J; Liu W; Meng L; Wu J; Chao L; Zeb A; Sun Y Environ Pollut; 2021 Jul; 280():116978. PubMed ID: 33780844 [TBL] [Abstract][Full Text] [Related]
22. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Servin AD; Pagano L; Castillo-Michel H; De la Torre-Roche R; Hawthorne J; Hernandez-Viezcas JA; Loredo-Portales R; Majumdar S; Gardea-Torresday J; Dhankher OP; White JC Nanotoxicology; 2017 Feb; 11(1):98-111. PubMed ID: 28024451 [TBL] [Abstract][Full Text] [Related]
23. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. Torrent L; Iglesias M; Marguí E; Hidalgo M; Verdaguer D; Llorens L; Kodre A; Kavčič A; Vogel-Mikuš K J Hazard Mater; 2020 Feb; 384():121201. PubMed ID: 31586917 [TBL] [Abstract][Full Text] [Related]
24. Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response. Huang G; Zuverza-Mena N; White JC; Hu H; Xing B; Dhankher OP Sci Total Environ; 2022 Sep; 839():156285. PubMed ID: 35636547 [TBL] [Abstract][Full Text] [Related]
25. Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses. Deng C; Wang Y; Cantu JM; Valdes C; Navarro G; Cota-Ruiz K; Hernandez-Viezcas JA; Li C; Elmer WH; Dimkpa CO; White JC; Gardea-Torresdey JL NanoImpact; 2022 Apr; 26():100406. PubMed ID: 35588596 [TBL] [Abstract][Full Text] [Related]
26. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Singh A; Singh NB; Hussain I; Singh H J Biotechnol; 2017 Nov; 262():11-27. PubMed ID: 28962841 [TBL] [Abstract][Full Text] [Related]
27. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. Larue C; Castillo-Michel H; Sobanska S; Trcera N; Sorieul S; Cécillon L; Ouerdane L; Legros S; Sarret G J Hazard Mater; 2014 May; 273():17-26. PubMed ID: 24709478 [TBL] [Abstract][Full Text] [Related]
28. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots. Hippler FWR; Petená G; Boaretto RM; Quaggio JA; Azevedo RA; Mattos-Jr D Environ Sci Pollut Res Int; 2018 May; 25(13):13134-13146. PubMed ID: 29488204 [TBL] [Abstract][Full Text] [Related]
29. Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce ( Shang H; Ma C; Li C; Zhao J; Elmer W; White JC; Xing B Environ Sci Technol; 2021 Oct; 55(20):13432-13442. PubMed ID: 34236843 [TBL] [Abstract][Full Text] [Related]
30. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Wang Y; Yang R; Zheng J; Shen Z; Xu X Ecotoxicol Environ Saf; 2019 Jan; 167():10-19. PubMed ID: 30292971 [TBL] [Abstract][Full Text] [Related]
31. Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Yang Z; Xiao Y; Jiao T; Zhang Y; Chen J; Gao Y Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32075321 [TBL] [Abstract][Full Text] [Related]
32. Comparative effects of copper nanoparticles and copper oxide nanoparticles on physiological characteristics and mineral element accumulation in Brassica chinensis L. Di X; Fu Y; Huang Q; Xu Y; Zheng S; Sun Y Plant Physiol Biochem; 2023 Mar; 196():974-981. PubMed ID: 36893612 [TBL] [Abstract][Full Text] [Related]
33. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Ahmed B; Khan MS; Musarrat J Environ Pollut; 2018 Sep; 240():802-816. PubMed ID: 29783198 [TBL] [Abstract][Full Text] [Related]
34. Foliar Exposure of Deuterium Stable Isotope-Labeled Nanoplastics to Lettuce: Quantitative Determination of Foliar Uptake, Transport, and Trophic Transfer in a Terrestrial Food Chain. Jiang X; White JC; He E; Van Gestel CAM; Cao X; Zhao L; Xu X; Guo W; Qiu H Environ Sci Technol; 2024 Sep; 58(35):15438-15449. PubMed ID: 39174873 [TBL] [Abstract][Full Text] [Related]
35. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice]. Wang SL; Zhang YX; Liu HZ; Xin H Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694 [TBL] [Abstract][Full Text] [Related]
36. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Larue C; Castillo-Michel H; Sobanska S; Cécillon L; Bureau S; Barthès V; Ouerdane L; Carrière M; Sarret G J Hazard Mater; 2014 Jan; 264():98-106. PubMed ID: 24275476 [TBL] [Abstract][Full Text] [Related]
37. Copper oxide nanoparticles alter cellular morphology via disturbing the actin cytoskeleton dynamics in Jia H; Chen S; Wang X; Shi C; Liu K; Zhang S; Li J Nanotoxicology; 2020 Feb; 14(1):127-144. PubMed ID: 31684790 [TBL] [Abstract][Full Text] [Related]
38. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Wang X; Sun W; Ma X Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135 [TBL] [Abstract][Full Text] [Related]
39. Phytotoxicity and Accumulation of Copper-Based Nanoparticles in Wang S; Fu Y; Zheng S; Xu Y; Sun Y Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564206 [TBL] [Abstract][Full Text] [Related]
40. Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. Wang G; Ma Y; Zhang P; He X; Zhang Z; Qu M; Ding Y; Zhang J; Xie C; Luo W; Zhang J; Chu S; Chai Z; Zhang Z Environ Pollut; 2017 May; 224():392-399. PubMed ID: 28237306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]