These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 32991184)
1. Nano Heat Pump Based on Reverse Thermo-osmosis Effect. Li J; Long R; Zhang B; Yang R; Liu W; Liu Z J Phys Chem Lett; 2020 Nov; 11(22):9856-9861. PubMed ID: 32991184 [TBL] [Abstract][Full Text] [Related]
2. Stack Thermo-Osmotic System for Low-Grade Thermal Energy Conversion. Li J; Zhang Z; Zhao R; Zhang B; Liang Y; Long R; Liu W; Liu Z ACS Appl Mater Interfaces; 2021 May; 13(18):21371-21378. PubMed ID: 33905242 [TBL] [Abstract][Full Text] [Related]
3. Mechanical strength of nanoporous graphene as a desalination membrane. Cohen-Tanugi D; Grossman JC Nano Lett; 2014 Nov; 14(11):6171-8. PubMed ID: 25357231 [TBL] [Abstract][Full Text] [Related]
4. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. Cohen-Tanugi D; Grossman JC J Chem Phys; 2014 Aug; 141(7):074704. PubMed ID: 25149803 [TBL] [Abstract][Full Text] [Related]
5. Thermo-Osmosis in Charged Nanochannels: Effects of Surface Charge and Ionic Strength. Chen WQ; Jivkov AP; Sedighi M ACS Appl Mater Interfaces; 2023 Jul; 15(28):34159-34171. PubMed ID: 37428544 [TBL] [Abstract][Full Text] [Related]
6. Multilayer Nanoporous Graphene Membranes for Water Desalination. Cohen-Tanugi D; Lin LC; Grossman JC Nano Lett; 2016 Feb; 16(2):1027-33. PubMed ID: 26806020 [TBL] [Abstract][Full Text] [Related]
7. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect. Chen WQ; Sedighi M; Jivkov AP Nanoscale; 2021 Jan; 13(3):1696-1716. PubMed ID: 33427268 [TBL] [Abstract][Full Text] [Related]
8. Seawater desalination using pillared graphene as a novel nano-membrane in reverse osmosis process: nonequilibrium MD simulation study. Mahdizadeh SJ; Goharshadi EK; Akhlamadi G Phys Chem Chem Phys; 2018 Aug; 20(34):22241-22248. PubMed ID: 30118119 [TBL] [Abstract][Full Text] [Related]
9. Theoretical Evaluation of Graphene Membrane Performance for Hydrogen Separation Using Molecular Dynamic Simulation. Nouri M; Ghasemzadeh K; Iulianelli A Membranes (Basel); 2019 Aug; 9(9):. PubMed ID: 31461938 [TBL] [Abstract][Full Text] [Related]
10. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat. Straub AP; Elimelech M Environ Sci Technol; 2017 Nov; 51(21):12925-12937. PubMed ID: 29022347 [TBL] [Abstract][Full Text] [Related]
11. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat. Shaulsky E; Boo C; Lin S; Elimelech M Environ Sci Technol; 2015 May; 49(9):5820-7. PubMed ID: 25839239 [TBL] [Abstract][Full Text] [Related]
12. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. Lin S; Yip NY; Cath TY; Osuji CO; Elimelech M Environ Sci Technol; 2014 May; 48(9):5306-13. PubMed ID: 24724732 [TBL] [Abstract][Full Text] [Related]
13. Charged nanoporous graphene membranes for water desalination. Nguyen CT; Beskok A Phys Chem Chem Phys; 2019 May; 21(18):9483-9494. PubMed ID: 31016317 [TBL] [Abstract][Full Text] [Related]
14. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Yang Z; Han X; Lee HK; Phan-Quang GC; Koh CSL; Lay CL; Lee YH; Miao YE; Liu T; Phang IY; Ling XY Nanoscale; 2018 Aug; 10(34):16005-16012. PubMed ID: 30113061 [TBL] [Abstract][Full Text] [Related]
15. Thermo-osmotic pressure and resistance to mass transport in a vapor-gap membrane. Rauter MT; Schnell SK; Hafskjold B; Kjelstrup S Phys Chem Chem Phys; 2021 Jun; 23(23):12988-13000. PubMed ID: 34085062 [TBL] [Abstract][Full Text] [Related]
16. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers. Tu YD; Wang RZ; Ge TS; Zheng X Sci Rep; 2017 Jan; 7():40437. PubMed ID: 28079171 [TBL] [Abstract][Full Text] [Related]
17. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics. Fu L; Merabia S; Joly L Phys Rev Lett; 2017 Nov; 119(21):214501. PubMed ID: 29219396 [TBL] [Abstract][Full Text] [Related]
18. Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis. Wang X; Liu M; Jing D; Mohamad A; Prezhdo O Nano Lett; 2020 Dec; 20(12):8965-8971. PubMed ID: 33231457 [TBL] [Abstract][Full Text] [Related]
19. Performance evaluation of air-source heat pump based on a pressure drop embedded model. Koopman T; Zhu T; Rohlfs W Heliyon; 2024 Feb; 10(4):e24634. PubMed ID: 38380015 [TBL] [Abstract][Full Text] [Related]
20. Molecular Dynamics Simulation Study of Polyamide Membrane Structures and RO/FO Water Permeation Properties. Yoshioka T; Kotaka K; Nakagawa K; Shintani T; Wu HC; Matsuyama H; Fujimura Y; Kawakatsu T Membranes (Basel); 2018 Dec; 8(4):. PubMed ID: 30563257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]