These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32991291)

  • 1. A Home-Based Bilateral Rehabilitation System With sEMG-based Real-Time Variable Stiffness.
    Liu Y; Guo S; Yang Z; Hirata H; Tamiya T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1529-1541. PubMed ID: 32991291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mirror Bilateral Neuro-Rehabilitation Robot System with the sEMG-Based Real-Time Patient Active Participant Assessment.
    Yang Z; Guo S; Hirata H; Kawanishi M
    Life (Basel); 2021 Nov; 11(12):. PubMed ID: 34947820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between sEMG and force as control interfaces to support planar arm movements in adults with Duchenne: a feasibility study.
    Lobo-Prat J; Nizamis K; Janssen MMHP; Keemink AQL; Veltink PH; Koopman BFJM; Stienen AHA
    J Neuroeng Rehabil; 2017 Jul; 14(1):73. PubMed ID: 28701169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on upper limb rehabilitation system based on surface EMG.
    Wang L; Li H; Wang Z; Meng F
    Biomed Mater Eng; 2015; 26 Suppl 1():S795-801. PubMed ID: 26406076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Home-based Tele-rehabilitation System With Enhanced Therapist-patient Remote Interaction: A Feasibility Study.
    Liu Y; Guo S; Yang Z; Hirata H; Tamiya T
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):4176-4186. PubMed ID: 35594225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Preliminary Usability Study of Integrated Electronic Tattoo Surface Electromyography (sEMG) Sensors.
    Lim J; Sun M; Liu JZ; Tan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training.
    Cai S; Chen Y; Huang S; Wu Y; Zheng H; Li X; Xie L
    Front Neurorobot; 2019; 13():31. PubMed ID: 31214010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Co-driven Functional Electrical Stimulation Control Strategy by Dynamic Surface Electromyography and Joint Angle.
    Xu R; Zhao X; Wang Z; Zhang H; Meng L; Ming D
    Front Neurosci; 2022; 16():909602. PubMed ID: 35898409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active triggering control of pneumatic rehabilitation gloves based on surface electromyography sensors.
    Feng Y; Zhong M; Wang X; Lu H; Wang H; Liu P; Vladareanu L
    PeerJ Comput Sci; 2021; 7():e448. PubMed ID: 33977130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mirror-type rehabilitation training with dynamic adjustment and assistance for shoulder joint].
    Chen S; Yan Y; Xu G; Gao X; Huang K; Tai C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):351-360. PubMed ID: 33913296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-varying surface electromyography topography as a prognostic tool for chronic low back pain rehabilitation.
    Hu Y; Kwok JW; Tse JY; Luk KD
    Spine J; 2014 Jun; 14(6):1049-56. PubMed ID: 24530438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: a case study.
    Lobo-Prat J; Janssen MMHP; Koopman BFJM; Stienen AHA; de Groot IJM
    J Neuroeng Rehabil; 2017 Aug; 14(1):86. PubMed ID: 28851391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wearable system to assist impaired-neck patients: Design and evaluation.
    Ghasemi A; Sadedel M; Moghaddam MM
    Proc Inst Mech Eng H; 2024 Jan; 238(1):63-77. PubMed ID: 38031465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper Limb Movement Classification Via Electromyographic Signals and an Enhanced Probabilistic Network.
    Burns A; Adeli H; Buford JA
    J Med Syst; 2020 Aug; 44(10):176. PubMed ID: 32829419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.