These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32992070)
1. Natural and anthropogenic radionuclides in water and wastewater: Sources, treatments and recoveries. Hossain F J Environ Radioact; 2020 Dec; 225():106423. PubMed ID: 32992070 [TBL] [Abstract][Full Text] [Related]
2. Presence of artificial radionuclides in samples from potable water and wastewater treatment plants. Martínez J; Peñalver A; Baciu T; Artigues M; Danús M; Aguilar C; Borrull F J Environ Radioact; 2018 Dec; 192():187-193. PubMed ID: 29982003 [TBL] [Abstract][Full Text] [Related]
3. Human and environmental factors affecting the activity of Zannoni D; Cantaluppi C; Ceccotto F; Giacetti W; Lovisetto B J Environ Radioact; 2019 Mar; 198():135-146. PubMed ID: 30605860 [TBL] [Abstract][Full Text] [Related]
4. From wastewater treatment to water resource recovery: Environmental and economic impacts of full-scale implementation. Faragò M; Damgaard A; Madsen JA; Andersen JK; Thornberg D; Andersen MH; Rygaard M Water Res; 2021 Oct; 204():117554. PubMed ID: 34500179 [TBL] [Abstract][Full Text] [Related]
5. Forward osmosis niches in seawater desalination and wastewater reuse. Valladares Linares R; Li Z; Sarp S; Bucs SS; Amy G; Vrouwenvelder JS Water Res; 2014 Dec; 66():122-139. PubMed ID: 25201336 [TBL] [Abstract][Full Text] [Related]
6. Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. Yadav A; Labhasetwar PK; Shahi VK Sci Total Environ; 2022 Feb; 806(Pt 2):150692. PubMed ID: 34600997 [TBL] [Abstract][Full Text] [Related]
7. Decontamination of radioactive wastewater: State of the art and challenges forward. Zhang X; Gu P; Liu Y Chemosphere; 2019 Jan; 215():543-553. PubMed ID: 30342399 [TBL] [Abstract][Full Text] [Related]
8. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Xie M; Shon HK; Gray SR; Elimelech M Water Res; 2016 Feb; 89():210-21. PubMed ID: 26674549 [TBL] [Abstract][Full Text] [Related]
9. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
10. Forward osmosis for application in wastewater treatment: a review. Lutchmiah K; Verliefde AR; Roest K; Rietveld LC; Cornelissen ER Water Res; 2014 Jul; 58():179-97. PubMed ID: 24762551 [TBL] [Abstract][Full Text] [Related]
11. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related]
12. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: Recent advances, proposed designs, and future directions. Jafarinejad S Chemosphere; 2021 Jan; 263():128116. PubMed ID: 33297109 [TBL] [Abstract][Full Text] [Related]
13. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse. Souza BM; Souza BS; Guimarães TM; Ribeiro TF; Cerqueira AC; Sant'Anna GL; Dezotti M Environ Sci Pollut Res Int; 2016 Nov; 23(22):22947-22956. PubMed ID: 27578092 [TBL] [Abstract][Full Text] [Related]
14. Phthalates in the environment: characteristics, fate and transport, and advanced wastewater treatment technologies. Tuan Tran H; Lin C; Bui XT; Ky Nguyen M; Dan Thanh Cao N; Mukhtar H; Giang Hoang H; Varjani S; Hao Ngo H; Nghiem LD Bioresour Technol; 2022 Jan; 344(Pt B):126249. PubMed ID: 34732372 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Sharma S; Singh B; Manchanda VK Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712 [TBL] [Abstract][Full Text] [Related]
16. Protein recovery as a resource from waste specifically via membrane technology-from waste to wonder. Shahid K; Srivastava V; Sillanpää M Environ Sci Pollut Res Int; 2021 Feb; 28(8):10262-10282. PubMed ID: 33442801 [TBL] [Abstract][Full Text] [Related]
17. Petrochemical wastewater and produced water: Treatment technology and resource recovery. Wei X; Kazemi M; Zhang S; Wolfe FA Water Environ Res; 2020 Oct; 92(10):1695-1700. PubMed ID: 32762112 [TBL] [Abstract][Full Text] [Related]
18. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery. Valladares Linares R; Li Z; Yangali-Quintanilla V; Ghaffour N; Amy G; Leiknes T; Vrouwenvelder JS Water Res; 2016 Jan; 88():225-234. PubMed ID: 26512800 [TBL] [Abstract][Full Text] [Related]
19. Energy self-sufficient biological municipal wastewater reclamation: Present status, challenges and solutions forward. Liu YJ; Gu J; Liu Y Bioresour Technol; 2018 Dec; 269():513-519. PubMed ID: 30190199 [TBL] [Abstract][Full Text] [Related]
20. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Wang H; Wu Y; Feng M; Tu W; Xiao T; Xiong T; Ang H; Yuan X; Chew JW Water Res; 2018 Nov; 144():215-225. PubMed ID: 30031366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]