These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32992078)

  • 41. Using zinc ion-enhanced fluorescence of sulfur quantum dots to improve the detection of the zinc(II)-binding antifungal drug clioquinol.
    Zhao J; Fan Z
    Mikrochim Acta; 2019 Dec; 187(1):3. PubMed ID: 31797060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 'Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications'.
    Kottam N; S P S
    Methods Appl Fluoresc; 2021 Jan; 9(1):. PubMed ID: 33043896
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy.
    Lu S; Liu L; Wang H; Zhao W; Li Z; Qu Z; Li J; Sun T; Wang T; Sui G
    Biomater Sci; 2019 Aug; 7(8):3258-3265. PubMed ID: 31169282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence.
    Jiao M; Li Y; Jia Y; Li C; Bian H; Gao L; Cai P; Luo X
    J Colloid Interface Sci; 2020 Apr; 565():35-42. PubMed ID: 31931297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Boron Doped Carbon Dots with Unusually High Photoluminescence Quantum Yield for Ratiometric Intracellular pH Sensing.
    Pal A; Ahmad K; Dutta D; Chattopadhyay A
    Chemphyschem; 2019 Apr; 20(8):1018-1027. PubMed ID: 30891892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescent MoS2 Quantum Dots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy.
    Dong H; Tang S; Hao Y; Yu H; Dai W; Zhao G; Cao Y; Lu H; Zhang X; Ju H
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3107-14. PubMed ID: 26761391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices.
    Shen J; Zhu Y; Yang X; Li C
    Chem Commun (Camb); 2012 Apr; 48(31):3686-99. PubMed ID: 22410424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Probe sonication-assisted rapid synthesis of highly fluorescent sulfur quantum dots.
    Kadian S; Chaulagain N; Joshi NN; Alam KM; Cui K; Shankar K; Manik G; Narayan RJ
    Nanotechnology; 2023 May; 34(30):. PubMed ID: 37158486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Review of Carbon and Graphene Quantum Dots for Sensing.
    Li M; Chen T; Gooding JJ; Liu J
    ACS Sens; 2019 Jul; 4(7):1732-1748. PubMed ID: 31267734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sulfur-Doped Graphene Oxide Quantum Dots as Photocatalysts for Hydrogen Generation in the Aqueous Phase.
    Gliniak J; Lin JH; Chen YT; Li CR; Jokar E; Chang CH; Peng CS; Lin JN; Lien WH; Tsai HM; Wu TK
    ChemSusChem; 2017 Aug; 10(16):3260-3267. PubMed ID: 28656618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of the chemical nature and position of spacers on controlling the optical properties of silicon quantum dots.
    Abdelhameed M; Aly S; Maity P; Manni E; Mohammed OF; Charpentier PA
    Phys Chem Chem Phys; 2019 Aug; 21(31):17096-17108. PubMed ID: 31339151
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Silicon Quantum Dots: Promising Theranostic Probes for the Future.
    Sivasankarapillai VS; Jose J; Shanavas MS; Marathakam A; Uddin MS; Mathew B
    Curr Drug Targets; 2019; 20(12):1255-1263. PubMed ID: 30961492
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy.
    Yao J; Li P; Li L; Yang M
    Acta Biomater; 2018 Jul; 74():36-55. PubMed ID: 29734008
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications.
    Chen X; Jin Q; Wu L; Tung C; Tang X
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12542-7. PubMed ID: 25296956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasensitive Electrochemiluminescence Biosensor Using Sulfur Quantum Dots as an Emitter and an Efficient DNA Walking Machine with Triple-Stranded DNA as a Signal Amplifier.
    Liu L; Zhang Y; Yuan R; Wang H
    Anal Chem; 2020 Nov; 92(22):15112-15119. PubMed ID: 33108166
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-enhanced photoluminescence from carbon nanodots.
    Zhang Y; Gonçalves H; da Silva JC; Geddes CD
    Chem Commun (Camb); 2011 May; 47(18):5313-5. PubMed ID: 21461418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Applications of Quantum Dots in Pharmaceutical Analysis.
    Belal F; Mabrouk M; Hammad S; Ahmed H; Barseem A
    J Fluoresc; 2024 Jan; 34(1):119-138. PubMed ID: 37222883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging.
    Chatzimitakos T; Kasouni A; Sygellou L; Avgeropoulos A; Troganis A; Stalikas C
    Talanta; 2017 Dec; 175():305-312. PubMed ID: 28841995
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Luminescence of lemon-derived carbon quantum dot and its potential application in luminescent probe for detection of Mo
    Hoan BT; Van Huan P; Van HN; Nguyen DH; Tam PD; Nguyen KT; Pham VH
    Luminescence; 2018 May; 33(3):545-551. PubMed ID: 29316170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging.
    Hu Y; Yang Z; Lu X; Guo J; Cheng R; Zhu L; Wang CF; Chen S
    Nanoscale; 2020 Mar; 12(9):5494-5500. PubMed ID: 32090221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.