These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32992285)

  • 1. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study.
    Claro B; González-Freire E; Calvelo M; Bessa LJ; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111349. PubMed ID: 32992285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular assembly and membrane activity of antimicrobial D,L-α-Cyclic peptides.
    Claro B; Peón A; González-Freire E; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112086. PubMed ID: 34492602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuated total reflection-Fourier transform infrared spectroscopy: a tool to characterize antimicrobial cyclic peptide-membrane interactions.
    Claro B; Goormaghtigh E; Bastos M
    Eur Biophys J; 2021 May; 50(3-4):629-639. PubMed ID: 33743025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the mechanisms of cyclic peptide self-assembly in membranes with the chirality-aware MA(R/S)TINI forcefield.
    Cabezón A; Calvelo M; Granja JR; Piñeiro Á; Garcia-Fandino R
    J Colloid Interface Sci; 2023 Jul; 642():84-99. PubMed ID: 37001460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-targeted self-assembling cyclic peptide nanotubes.
    Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR
    Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison.
    Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control.
    Calvelo M; Granja JR; Garcia-Fandino R
    Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side-Chain Interactions in d/l Peptide Nanotubes: Studies by Crystallography, NMR Spectroscopy and Molecular Dynamics.
    Silk MR; Price JR; Mohanty B; Leiros HS; Lund BA; Thompson PE; Chalmers DK
    Chemistry; 2021 Oct; 27(58):14489-14500. PubMed ID: 34415083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes.
    González-Freire E; Novelli F; Pérez-Estévez A; Seoane R; Amorín M; Granja JR
    Chemistry; 2021 Feb; 27(9):3029-3038. PubMed ID: 32986280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes.
    Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R
    ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the antibacterial action of cyclic peptides: insights from coarse-grained MD simulations.
    Khalfa A; Tarek M
    J Phys Chem B; 2010 Mar; 114(8):2676-84. PubMed ID: 20143883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Insights into Pore Formation Mechanism, Membrane Perturbation, and Water Permeation by the Antimicrobial Peptide Pleurocidin: A Combined All-Atom and Coarse-Grained Molecular Dynamics Simulation Study.
    Talandashti R; Mehrnejad F; Rostamipour K; Doustdar F; Lavasanifar A
    J Phys Chem B; 2021 Jul; 125(26):7163-7176. PubMed ID: 34171196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane Binding of Antimicrobial Peptides Is Modulated by Lipid Charge Modification.
    Simcock PW; Bublitz M; Cipcigan F; Ryadnov MG; Crain J; Stansfeld PJ; Sansom MSP
    J Chem Theory Comput; 2021 Feb; 17(2):1218-1228. PubMed ID: 33395285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative antimicrobial action of melittin on lipid membranes: A coarse-grained molecular dynamics study.
    Miyazaki Y; Shinoda W
    Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183955. PubMed ID: 35526599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partition of antimicrobial D-L-α-cyclic peptides into bacterial model membranes.
    Claro B; González-Freire E; Granja JR; Garcia-Fandiño R; Gallová J; Uhríková D; Fedorov A; Coutinho A; Bastos M
    Biochim Biophys Acta Biomembr; 2022 Feb; 1864(1):183729. PubMed ID: 34506796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.