BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32992307)

  • 1. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.
    Lu Y; Du G; Chen F; Yang Q; Bian H; Yong J; Hou X
    Sci Rep; 2016 Sep; 6():32675. PubMed ID: 27666667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection.
    Sergides M; Truong VG; Chormaic SN
    Nanotechnology; 2016 Sep; 27(36):365301. PubMed ID: 27479353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed nanoscale optical trapping with plasmonic double nanohole aperture.
    Anyika T; Hong C; Ndukaife JC
    Nanoscale; 2023 Jun; 15(22):9710-9717. PubMed ID: 37132641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide.
    Lou Y; Ning X; Wu B; Pang Y
    Front Optoelectron; 2021 Dec; 14(4):399-406. PubMed ID: 36637761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fano Resonance-Assisted All-Dielectric Array for Enhanced Near-Field Optical Trapping of Nanoparticles.
    Conteduca D; Khan SN; Martínez Ruiz MA; Bruce GD; Krauss TF; Dholakia K
    ACS Photonics; 2023 Dec; 10(12):4322-4328. PubMed ID: 38145167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores.
    Kerman S; Chen C; Li Y; Van Roy W; Lagae L; Van Dorpe P
    Nanoscale; 2015 Nov; 7(44):18612-8. PubMed ID: 26490057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-state switchable plasmonic tweezers for dynamic manipulation of nano-objects.
    Messina GC; Zambrana-Puyalto X; Maccaferri N; Garoli D; De Angelis F
    Nanoscale; 2020 Apr; 12(15):8574-8581. PubMed ID: 32248206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.