BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32992459)

  • 1. Predictive Modeling for Occupational Safety Outcomes and Days Away from Work Analysis in Mining Operations.
    Yedla A; Kakhki FD; Jannesari A
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32992459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing accident narratives with word embeddings: Improving accuracy, richness, and generalizability.
    Goldberg DM
    J Safety Res; 2022 Feb; 80():441-455. PubMed ID: 35249625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction accident narrative classification: An evaluation of text mining techniques.
    Goh YM; Ubeynarayana CU
    Accid Anal Prev; 2017 Nov; 108():122-130. PubMed ID: 28865927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing safety of construction workers in Korea: an integrated text mining and machine learning framework for predicting accident types.
    Yoo JW; Park J; Park H
    Int J Inj Contr Saf Promot; 2024 Jun; 31(2):203-215. PubMed ID: 38164519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The severity prediction of the binary and multi-class cardiovascular disease - A machine learning-based fusion approach.
    Kibria HB; Matin A
    Comput Biol Chem; 2022 Jun; 98():107672. PubMed ID: 35390751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting occupational injury causal factors using text-based analytics: A systematic review.
    Khairuddin MZF; Hasikin K; Abd Razak NA; Lai KW; Osman MZ; Aslan MF; Sabanci K; Azizan MM; Satapathy SC; Wu X
    Front Public Health; 2022; 10():984099. PubMed ID: 36187621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injury severity analysis of pedestrian and bicyclist trespassing crashes at non-crossings: A hybrid predictive text analytics and heterogeneity-based statistical modeling approach.
    Wali B; Khattak AJ; Ahmad N
    Accid Anal Prev; 2021 Feb; 150():105835. PubMed ID: 33310430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying health related occupations of Twitter users through word embedding and deep neural networks.
    Zainab K; Srivastava G; Mago V
    BMC Bioinformatics; 2022 Sep; 22(Suppl 10):630. PubMed ID: 36171569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploratory Data Mining Techniques (Decision Tree Models) for Examining the Impact of Internet-Based Cognitive Behavioral Therapy for Tinnitus: Machine Learning Approach.
    Rodrigo H; Beukes EW; Andersson G; Manchaiah V
    J Med Internet Res; 2021 Nov; 23(11):e28999. PubMed ID: 34726612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model based on PDCA and data mining approach for the prevention of occupational accidents in the plumbing activity in the construction sector.
    Mosquera R; Pérez Vergara IG; Contreras-Pacheco OE
    Work; 2024; 78(2):399-410. PubMed ID: 38277324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying injury narratives of large administrative databases for surveillance-A practical approach combining machine learning ensembles and human review.
    Marucci-Wellman HR; Corns HL; Lehto MR
    Accid Anal Prev; 2017 Jan; 98():359-371. PubMed ID: 27863339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling important factors on occupational accident severity factor in the construction industry using a combination of artificial neural network and genetic algorithm.
    Mohammadian F; Sadeghi M; Hanifi SM; Noorizadeh N; Abedi K; Fazli Z
    Work; 2022; 73(1):189-202. PubMed ID: 35871380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of machine learning and logistic regression in modelling the association of body condition score and submission rate.
    Bates AJ; Saldias B
    Prev Vet Med; 2019 Nov; 171():104765. PubMed ID: 31499454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined
    Maleckar MM; Myklebust L; Uv J; Florvaag PM; Strøm V; Glinge C; Jabbari R; Vejlstrup N; Engstrøm T; Ahtarovski K; Jespersen T; Tfelt-Hansen J; Naumova V; Arevalo H
    Front Physiol; 2021; 12():745349. PubMed ID: 34819872
    [No Abstract]   [Full Text] [Related]  

  • 18. Can Machine Learning Algorithms Predict Which Patients Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty?
    Fontana MA; Lyman S; Sarker GK; Padgett DE; MacLean CH
    Clin Orthop Relat Res; 2019 Jun; 477(6):1267-1279. PubMed ID: 31094833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the consequences of accidents involving dangerous substances using machine learning.
    Chebila M
    Ecotoxicol Environ Saf; 2021 Jan; 208():111470. PubMed ID: 33091772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating shallow and deep learning strategies for the 2018 n2c2 shared task on clinical text classification.
    Oleynik M; Kugic A; Kasáč Z; Kreuzthaler M
    J Am Med Inform Assoc; 2019 Nov; 26(11):1247-1254. PubMed ID: 31512729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.