These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32992460)

  • 1. Grating-Corner-Cube-Based Roll Angle Sensor.
    Zhou S; Le V; Mi Q; Wu G
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision roll angle measurement system based on autocollimation.
    Ren W; Cui J; Tan J
    Appl Opt; 2022 May; 61(13):3811-3818. PubMed ID: 36256424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional angle measurement with sub-arcsecond precision and MHz update rate using heterodyne interferometry with optical frequency comb.
    Lin C; Zhou S; Shi L; Yang Y; Wu G
    Opt Lett; 2024 Feb; 49(3):526-529. PubMed ID: 38300050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roll angle autocollimator measurement method based on a cylindrical cube-corner reflector with a high resolution and large range.
    Li R; Xie L; Zhen Y; Xiao H; Wang W; Guo J; Konyakhin I; Nikitin M; Yu X
    Opt Express; 2022 Feb; 30(5):7147-7161. PubMed ID: 35299484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute angular position measurement by dual-comb spectroscopy of an autocollimation diffracted beam.
    Zhou S; Jiang R; Zhang R; Shi L; Zhang D; Wu G
    Opt Lett; 2023 Mar; 48(5):1104-1107. PubMed ID: 36857224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional small angle measurement system based on autocollimation method.
    Ren W; Cui J; Tan J
    Rev Sci Instrum; 2022 May; 93(5):055102. PubMed ID: 35649758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, fabrication, and verification of a three-dimensional autocollimator.
    Yin Y; Cai S; Qiao Y
    Appl Opt; 2016 Dec; 55(35):9986-9991. PubMed ID: 27958401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved differential-grating plane-mirror heterodyne interferometer for small roll angle measurement of a linear motion.
    Tang S; Ren Z; Han Q; Sheng W; Li M
    Rev Sci Instrum; 2020 Apr; 91(4):045113. PubMed ID: 32357738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution-enhanced heterodyne laser interferometer with differential configuration for roll angle measurement.
    Qi J; Wang Z; Huang J; Gao J
    Opt Express; 2018 Apr; 26(8):9634-9644. PubMed ID: 29715912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer.
    Tang S; Wang Z; Gao J; Guo J
    Rev Sci Instrum; 2014 Apr; 85(4):045110. PubMed ID: 24784662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring corner cube reflectors through ray tracing of a reflected wavefront.
    Lyu H; Kong L; Wang S; Xu M
    Appl Opt; 2021 Aug; 60(22):6560-6565. PubMed ID: 34612894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror.
    Yang Q
    Appl Opt; 2010 Jul; 49(21):4088-95. PubMed ID: 20648193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration method of the right-angle error of a hollow corner-cube retroreflector based on an independent autocollimator.
    Li R; Huo Y; Yan J; Wen D; Konyakhin I; Dang D; Zhou X; Huang G; Ma Y
    Appl Opt; 2024 Jan; 63(3):668-675. PubMed ID: 38294378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ultracompact Angular Displacement Sensor Based on the Talbot Effect of Optical Microgratings.
    Yang Z; Ma X; Yu D; Cao B; Niu Q; Li M; Xin C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution and stability roll angle measurement method for precision linear displacement stages.
    Jin T; Xia G; Hou W; Le Y; Han S
    Rev Sci Instrum; 2017 Feb; 88(2):023102. PubMed ID: 28249520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Displacement and Angle Sensor with Ultra-High Compactness Based on Self-Imaging Effect of Optical Microgratings.
    Zhang M; Yang H; Niu Q; Zhang X; Yang J; Lai J; Fan C; Li M; Xin C
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust roll angular error measurement system for precision machines.
    Cai Y; Yang B; Fan KC
    Opt Express; 2019 Mar; 27(6):8027-8036. PubMed ID: 31052628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Two-Dimensional Precision Level for Real-Time Measurement Based on Zoom Fast Fourier Transform.
    Fu H; Wang Z; Lin X; Xing X; Yang R; Yang H; Hu P; Ding X; Yu L
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. External right-angle measurement using a two-autocollimator system.
    He Y; Liu Q; He JJ; He ZJ; Hu ZZ; Duan HZ; Yeh HC
    Appl Opt; 2019 Feb; 58(4):1158-1163. PubMed ID: 30874167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.