These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32992758)

  • 1. In Vivo Regeneration of Large Bone Defects by Cross-Linked Porous Hydrogel: A Pilot Study in Mice Combining Micro Tomography, Histological Analyses, Raman Spectroscopy and Synchrotron Infrared Imaging.
    Adachi T; Boschetto F; Miyamoto N; Yamamoto T; Marin E; Zhu W; Kanamura N; Tahara Y; Akiyoshi K; Mazda O; Nishimura I; Pezzotti G
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation.
    Adachi T; Miyamoto N; Imamura H; Yamamoto T; Marin E; Zhu W; Kobara M; Sowa Y; Tahara Y; Kanamura N; Akiyoshi K; Mazda O; Nishimura I; Pezzotti G
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanogel tectonic porous 3D scaffold for direct reprogramming fibroblasts into osteoblasts and bone regeneration.
    Sato Y; Yamamoto K; Horiguchi S; Tahara Y; Nakai K; Kotani SI; Oseko F; Pezzotti G; Yamamoto T; Kishida T; Kanamura N; Akiyoshi K; Mazda O
    Sci Rep; 2018 Oct; 8(1):15824. PubMed ID: 30361649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanogel tectonic porous gel loading biologics, nanocarriers, and cells for advanced scaffold.
    Hashimoto Y; Mukai SA; Sawada S; Sasaki Y; Akiyoshi K
    Biomaterials; 2015 Jan; 37():107-15. PubMed ID: 25453324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic Response to Polysaccharide Nanogel Sheets of Human Fibroblasts After Conversion Into Functional Osteoblasts by Direct Phenotypic Cell Reprogramming.
    Nakai K; Yamamoto K; Kishida T; Kotani SI; Sato Y; Horiguchi S; Yamanobe H; Adachi T; Boschetto F; Marin E; Zhu W; Akiyoshi K; Yamamoto T; Kanamura N; Pezzotti G; Mazda O
    Front Bioeng Biotechnol; 2021; 9():713932. PubMed ID: 34540813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The improvement of calvarial bone healing by durable nanogel-crosslinked materials.
    Charoenlarp P; Rajendran AK; Fujihara R; Kojima T; Nakahama KI; Sasaki Y; Akiyoshi K; Takechi M; Iseki S
    J Biomater Sci Polym Ed; 2018 Oct; 29(15):1876-1894. PubMed ID: 30156966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic response of mesenchymal progenitor cells to natural polysaccharide nanogel and atelocollagen scaffolds: A spectroscopic study.
    Horiguchi S; Adachi T; Rondinella A; Boschetto F; Marin E; Zhu W; Tahara Y; Yamamoto T; Kanamura N; Akiyoshi K; Pezzotti G; Mazda O
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1325-1340. PubMed ID: 30889667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations.
    El-Fiqi A; Kim JH; Kim HW
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration.
    Lu J; Shen X; Sun X; Yin H; Yang S; Lu C; Wang Y; Liu Y; Huang Y; Yang Z; Dong X; Wang C; Guo Q; Zhao L; Sun X; Lu S; Mikos AG; Peng J; Wang X
    Theranostics; 2018; 8(18):5039-5058. PubMed ID: 30429885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
    Liu Z; Yin X; Ye Q; He W; Ge M; Zhou X; Hu J; Zou S
    J Biomater Appl; 2016 Jul; 31(1):121-31. PubMed ID: 27009932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchrotron radiation techniques boost the research in bone tissue engineering.
    Mastrogiacomo M; Campi G; Cancedda R; Cedola A
    Acta Biomater; 2019 Apr; 89():33-46. PubMed ID: 30880235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits.
    Zhang H; Zhou Y; Yu N; Ma H; Wang K; Liu J; Zhang W; Cai Z; He Y
    Acta Biomater; 2019 Jun; 91():82-98. PubMed ID: 30986527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of a Prevascularized Bone Graft for Large Defects in the Ovine Tibia.
    Yang YP; Gadomski BC; Bruyas A; Easley J; Labus KM; Nelson B; Palmer RH; Stewart H; McGilvray K; Puttlitz CM; Regan D; Stahl A; Lui E; Li J; Moeinzadeh S; Kim S; Maloney W; Gardner MJ
    Tissue Eng Part A; 2021 Dec; 27(23-24):1458-1469. PubMed ID: 33858216
    [No Abstract]   [Full Text] [Related]  

  • 14. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.
    Shen M; Wang L; Gao Y; Feng L; Xu C; Li S; Wang X; Wu Y; Guo Y; Pei G
    Mater Today Bio; 2022 Dec; 16():100382. PubMed ID: 36033373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo.
    Zhang Y; Lin T; Meng H; Wang X; Peng H; Liu G; Wei S; Lu Q; Wang Y; Wang A; Xu W; Shao H; Peng J
    J Orthop Translat; 2022 Mar; 33():13-23. PubMed ID: 35198379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration.
    Sun J; Li L; Xing F; Yang Y; Gong M; Liu G; Wu S; Luo R; Duan X; Liu M; Zou M; Xiang Z
    Stem Cell Res Ther; 2021 Dec; 12(1):591. PubMed ID: 34863288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration.
    Sarker A; Amirian J; Min YK; Lee BT
    Int J Biol Macromol; 2015 Nov; 81():898-911. PubMed ID: 26394381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.