BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32992820)

  • 1. Evaluation of the Antibacterial Activity and Cell Response for 3D-Printed Polycaprolactone/Nanohydroxyapatite Scaffold with Zinc Oxide Coating.
    Cho YS; Kim HK; Ghim MS; Hong MW; Kim YY; Cho YS
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility.
    Wang Y; Liu C; Song T; Cao Z; Wang T
    Heliyon; 2024 Mar; 10(5):e26071. PubMed ID: 38468962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Polycaprolactone/Nano Hydroxyapatite (PCL/nHA) 3D Scaffold with Enhanced In Vitro Cell Response via Design for Additive Manufacturing (DfAM).
    Cho YS; Gwak SJ; Cho YS
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33923079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.
    Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA
    Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical, mechanical, and biological performance of chitosan-based nanocomposite coating deposited on the polycaprolactone-based 3D printed scaffold: Potential application in bone tissue engineering.
    Najafabadi FM; Karbasi S; Benisi SZ; Shojaei S
    Int J Biol Macromol; 2023 Jul; 243():125218. PubMed ID: 37285889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization.
    Zhang X; He J; Qiao L; Wang Z; Zheng Q; Xiong C; Yang H; Li K; Lu C; Li S; Chen H; Hu X
    Cell Prolif; 2022 Oct; 55(10):e13289. PubMed ID: 35791492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration.
    Angili SN; Morovvati MR; Kardan-Halvaei M; Saber-Samandari S; Razmjooee K; Abed AM; Toghraie D; Khandan A
    Int J Biol Macromol; 2023 Jan; 224():1152-1165. PubMed ID: 36346262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics.
    Moghaddaszadeh A; Seddiqi H; Najmoddin N; Abbasi Ravasjani S; Klein-Nulend J
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34670200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of dermal tissue engineering in a rat model using a composite 3D-printed scaffold with electrospun nanofibers and recipient-site preconditioning with an external volume expansion device.
    Choi HW; Hong J; Kim J; Jeong W; Jo T; Lee HW; Park SW; Choi J
    J Biomater Appl; 2022 Jul; 37(1):23-32. PubMed ID: 35319292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed β-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: Coating optimization, in vitro bioactivity and antibacterial properties.
    Alves APN; Arango-Ospina M; Oliveira RLMS; Ferreira IM; de Moraes EG; Hartmann M; de Oliveira APN; Boccaccini AR; de Sousa Trichês E
    J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):881-894. PubMed ID: 36440654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering.
    Pant S; Thomas S; Loganathan S; Valapa RB
    Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.
    Lee SH; Cho YS; Hong MW; Lee BK; Park Y; Park SH; Kim YY; Cho YS
    Biomed Mater; 2017 Sep; 12(5):055003. PubMed ID: 28762959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically Stiff, Zinc Cross-Linked Nanocomposite Scaffolds with Improved Osteostimulation and Antibacterial Properties.
    Sehgal RR; Carvalho E; Banerjee R
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13735-47. PubMed ID: 27176647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile way to construct Sr-doped apatite coating on the surface of 3D printed scaffolds to improve osteogenic effect.
    Chen S; Wang Y; Ma J
    J Biomater Appl; 2022 Aug; 37(2):344-354. PubMed ID: 35400209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan/MWCNTs nanocomposite coating on 3D printed scaffold of poly 3-hydroxybutyrate/magnetic mesoporous bioactive glass: A new approach for bone regeneration.
    Azadani RN; Karbasi S; Poursamar A
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129407. PubMed ID: 38224805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.