These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 32992847)
1. Differential Production of Cartilage ECM in 3D Agarose Constructs by Equine Articular Cartilage Progenitor Cells and Mesenchymal Stromal Cells. Schmidt S; Abinzano F; Mensinga A; Teßmar J; Groll J; Malda J; Levato R; Blunk T Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992847 [TBL] [Abstract][Full Text] [Related]
2. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725 [TBL] [Abstract][Full Text] [Related]
3. Progenitor Cells in Healthy and Osteoarthritic Human Cartilage Have Extensive Culture Expansion Capacity while Retaining Chondrogenic Properties. Rikkers M; Korpershoek JV; Levato R; Malda J; Vonk LA Cartilage; 2021 Dec; 13(2_suppl):129S-142S. PubMed ID: 34802263 [TBL] [Abstract][Full Text] [Related]
4. Human Articular Cartilage Progenitor Cells Are Responsive to Mechanical Stimulation and Adenoviral-Mediated Overexpression of Bone-Morphogenetic Protein 2. Neumann AJ; Gardner OF; Williams R; Alini M; Archer CW; Stoddart MJ PLoS One; 2015; 10(8):e0136229. PubMed ID: 26292283 [TBL] [Abstract][Full Text] [Related]
5. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. McCarthy HE; Bara JJ; Brakspear K; Singhrao SK; Archer CW Vet J; 2012 Jun; 192(3):345-51. PubMed ID: 21968294 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. Kisiday JD; Kopesky PW; Evans CH; Grodzinsky AJ; McIlwraith CW; Frisbie DD J Orthop Res; 2008 Mar; 26(3):322-31. PubMed ID: 17960654 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering. Contentin R; Demoor M; Concari M; Desancé M; Audigié F; Branly T; Galéra P Stem Cell Rev Rep; 2020 Feb; 16(1):126-143. PubMed ID: 31745710 [TBL] [Abstract][Full Text] [Related]
9. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells. Lettry V; Hosoya K; Takagi S; Okumura M Jpn J Vet Res; 2010 May; 58(1):5-15. PubMed ID: 20645581 [TBL] [Abstract][Full Text] [Related]
10. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly. White JL; Walker NJ; Hu JC; Borjesson DL; Athanasiou KA Tissue Eng Part A; 2018 Aug; 24(15-16):1262-1272. PubMed ID: 29478385 [TBL] [Abstract][Full Text] [Related]
11. The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Huang Z; Godkin O; Schulze-Tanzil G Stem Cell Rev Rep; 2017 Feb; 13(1):50-67. PubMed ID: 27826794 [TBL] [Abstract][Full Text] [Related]
13. An assessment of bone marrow mesenchymal stem cell and human articular cartilage derived chondroprogenitor cocultures vs. monocultures. Vinod E; Amirtham SM; Kachroo U Knee; 2021 Mar; 29():418-425. PubMed ID: 33721626 [TBL] [Abstract][Full Text] [Related]
14. The effect of hypoxia on chondrogenesis of equine synovial membrane-derived and bone marrow-derived mesenchymal stem cells. Gale AL; Mammone RM; Dodson ME; Linardi RL; Ortved KF BMC Vet Res; 2019 Jun; 15(1):201. PubMed ID: 31200719 [TBL] [Abstract][Full Text] [Related]
15. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage. Chou CL; Rivera AL; Williams V; Welter JF; Mansour JM; Drazba JA; Sakai T; Baskaran H Acta Biomater; 2017 Sep; 60():210-219. PubMed ID: 28709984 [TBL] [Abstract][Full Text] [Related]
16. Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis. Pattappa G; Schewior R; Hofmeister I; Seja J; Zellner J; Johnstone B; Docheva D; Angele P Cells; 2019 Aug; 8(8):. PubMed ID: 31434236 [TBL] [Abstract][Full Text] [Related]
17. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211 [TBL] [Abstract][Full Text] [Related]
18. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Wu Y; Yang Z; Denslin V; Ren X; Lee CS; Yap FL; Lee EH Am J Sports Med; 2020 Jun; 48(7):1735-1747. PubMed ID: 32191492 [TBL] [Abstract][Full Text] [Related]
19. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881 [TBL] [Abstract][Full Text] [Related]