BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32992888)

  • 1. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peg-in-hole assembly skill imitation learning method based on ProMPs under task geometric representation.
    Zang Y; Wang P; Zha F; Guo W; Zheng C; Sun L
    Front Neurorobot; 2023; 17():1320251. PubMed ID: 38023454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Robot Screwing Skill Method Based on Demonstration Learning.
    Li F; Bai Y; Zhao M; Fu T; Men Y; Song R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion generation of robotic surgical tasks: learning from expert demonstrations.
    Reiley CE; Plaku E; Hager GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():967-70. PubMed ID: 21096982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot complex motion learning based on unsupervised trajectory segmentation and movement primitives.
    Song C; Liu G; Zhang X; Zang X; Xu C; Zhao J
    ISA Trans; 2020 Feb; 97():325-335. PubMed ID: 31395285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Enhanced Robot Massage System in Smart Homes Using Force Sensing and a Dynamic Movement Primitive.
    Li C; Fahmy A; Li S; Sienz J
    Front Neurorobot; 2020; 14():30. PubMed ID: 32714174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ASAP-CORPS: A Semi-Autonomous Platform for COntact-Rich Precision Surgery.
    Balakuntala MV; Gonzalez GT; Wachs JP; Voyles RM
    Mil Med; 2023 Nov; 188(Suppl 6):412-419. PubMed ID: 37948233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vision-Based Learning from Demonstration System for Robot Arms.
    Hwang PJ; Hsu CC; Chou PY; Wang WY; Lin CH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A User Study on Robot Skill Learning Without a Cost Function: Optimization of Dynamic Movement Primitives via Naive User Feedback.
    Vollmer AL; Hemion NJ
    Front Robot AI; 2018; 5():77. PubMed ID: 33500956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Improvement of Robot Stiffness-Adaptive Skill Primitive Generalization Using the Surface Electromyography in Human-Robot Collaboration.
    Guan Y; Wang N; Yang C
    Front Neurosci; 2021; 15():694914. PubMed ID: 34594181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning parametric dynamic movement primitives from multiple demonstrations.
    Matsubara T; Hyon SH; Morimoto J
    Neural Netw; 2011 Jun; 24(5):493-500. PubMed ID: 21388784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalize Robot Learning From Demonstration to Variant Scenarios With Evolutionary Policy Gradient.
    Cao J; Liu W; Liu Y; Yang J
    Front Neurorobot; 2020; 14():21. PubMed ID: 32372940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Task-Parameterized Learning from Demonstration for Collaborative Object Movement.
    Hu S; Kuchenbecker KJ
    Appl Bionics Biomech; 2019; 2019():9765383. PubMed ID: 31885690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning to Perform Trajectory Generation From Low-Quality Demonstrations.
    Xu S; Zhang H; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; PP():. PubMed ID: 38941199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced teaching interface for a robot using DMP and GMR.
    Li C; Yang C; Ju Z; Annamalai ASK
    Int J Intell Robot Appl; 2018; 2(1):110-121. PubMed ID: 29577074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.