BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 32993088)

  • 1. AQP2: Mutations Associated with Congenital Nephrogenic Diabetes Insipidus and Regulation by Post-Translational Modifications and Protein-Protein Interactions.
    Gao C; Higgins PJ; Zhang W
    Cells; 2020 Sep; 9(10):. PubMed ID: 32993088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update.
    Milano S; Carmosino M; Gerbino A; Svelto M; Procino G
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29125546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).
    Bichet DG; Bockenhauer D
    Best Pract Res Clin Endocrinol Metab; 2016 Mar; 30(2):263-76. PubMed ID: 27156763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A female with X-linked Nephrogenic diabetes insipidus in a family with inherited central diabetes Insipidus: Case report and review of the literature.
    Ding C; Beetz R; Rittner G; Bartsch O
    Am J Med Genet A; 2020 May; 182(5):1032-1040. PubMed ID: 32073219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. V2R mutations and nephrogenic diabetes insipidus.
    Bichet DG
    Prog Mol Biol Transl Sci; 2009; 89():15-29. PubMed ID: 20374732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nephrogenic diabetes insipidus.
    Bichet DG
    Adv Chronic Kidney Dis; 2006 Apr; 13(2):96-104. PubMed ID: 16580609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiopathology and diagnosis of nephrogenic diabetes insipidus.
    Devuyst O
    Ann Endocrinol (Paris); 2012 Apr; 73(2):128-9. PubMed ID: 22503803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Clinical and laboratory characteristics of arginine vasopressin resistance, caused by a new homozygous mutation p.R113C in AQP2].
    Makretskaya NA; Nanzanova US; Hamaganova IR; Eremina ER; Tiulpakov AN
    Probl Endokrinol (Mosk); 2023 May; 69(2):75-79. PubMed ID: 37448274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hereditary nephrogenic diabetes insipidus in Japanese patients: analysis of 78 families and report of 22 new mutations in AVPR2 and AQP2.
    Sasaki S; Chiga M; Kikuchi E; Rai T; Uchida S
    Clin Exp Nephrol; 2013 Jun; 17(3):338-44. PubMed ID: 23150186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment.
    Moeller HB; Rittig S; Fenton RA
    Endocr Rev; 2013 Apr; 34(2):278-301. PubMed ID: 23360744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nephrogenic diabetes insipidus.
    Bichet DG
    Am J Med; 1998 Nov; 105(5):431-42. PubMed ID: 9831428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus.
    Robben JH; Knoers NV; Deen PM
    Am J Physiol Renal Physiol; 2006 Aug; 291(2):F257-70. PubMed ID: 16825342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the vasopressin V2 receptor and aquaporin-2 genes in 12 families with congenital nephrogenic diabetes insipidus.
    Vargas-Poussou R; Forestier L; Dautzenberg MD; Niaudet P; Déchaux M; Antignac C
    J Am Soc Nephrol; 1997 Dec; 8(12):1855-62. PubMed ID: 9402087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel mutations associated with nephrogenic diabetes insipidus. A clinical-genetic study.
    García Castaño A; Pérez de Nanclares G; Madariaga L; Aguirre M; Chocron S; Madrid A; Lafita Tejedor FJ; Gil Campos M; Sánchez Del Pozo J; Ruiz Cano R; Espino M; Gomez Vida JM; Santos F; García Nieto VM; Loza R; Rodríguez LM; Hidalgo Barquero E; Printza N; Camacho JA; Castaño L; Ariceta G;
    Eur J Pediatr; 2015 Oct; 174(10):1373-85. PubMed ID: 25902753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic deletion of the nuclear factor of activated T cells 5 in collecting duct principal cells causes nephrogenic diabetes insipidus.
    Petrillo F; Chernyakov D; Esteva-Font C; Poulsen SB; Edemir B; Fenton RA
    FASEB J; 2022 Nov; 36(11):e22583. PubMed ID: 36197017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption.
    Cano-Peñalver JL; Griera M; Serrano I; Rodríguez-Puyol D; Dedhar S; de Frutos S; Rodríguez-Puyol M
    FASEB J; 2014 Aug; 28(8):3645-59. PubMed ID: 24784577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel
    Li Q; Tian D; Cen J; Duan L; Xia W
    Front Endocrinol (Lausanne); 2021; 12():686818. PubMed ID: 34177810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of AQP2 water channels by protein kinase A: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F
    Clin Exp Nephrol; 2021 Oct; 25(10):1051-1056. PubMed ID: 34224008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2 gene.
    Faerch M; Christensen JH; Corydon TJ; Kamperis K; de Zegher F; Gregersen N; Robertson GL; Rittig S
    Clin Endocrinol (Oxf); 2008 Mar; 68(3):395-403. PubMed ID: 17941907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severe congenital nephrogenic diabetes insipidus in a compound heterozygote with a new large deletion of the AQP2 gene. A case report.
    Peces R; Mena R; Peces C; Santos-Simarro F; Fernández L; Afonso S; Lapunzina P; Selgas R; Nevado J
    Mol Genet Genomic Med; 2019 Apr; 7(4):e00568. PubMed ID: 30784238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.