These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32993098)

  • 1. Recent Advances on the Role of GSK3β in the Pathogenesis of Amyotrophic Lateral Sclerosis.
    Choi HJ; Cha SJ; Lee JW; Kim HJ; Kim K
    Brain Sci; 2020 Sep; 10(10):. PubMed ID: 32993098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): the first step towards an experimental model for sporadic ALS.
    de Munck E; Muñoz-Sáez E; Miguel BG; Solas MT; Ojeda I; Martínez A; Gil C; Arahuetes RM
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):243-255. PubMed ID: 23688553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCF-Slimb is critical for Glycogen synthase kinase-3β-mediated suppression of TAF15-induced neurotoxicity in Drosophila.
    Choi HJ; Joo Cha S; Do HA; Kim HJ; Lee JW; Kim K
    J Neurochem; 2021 Jun; 157(6):2119-2127. PubMed ID: 32915460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-catenin aggregation in models of ALS motor neurons: GSK3β inhibition effect and neuronal differentiation.
    Pinto C; Medinas DB; Fuentes-Villalobos F; Maripillán J; Castro AF; Martínez AD; Osses N; Hetz C; Henríquez JP
    Neurobiol Dis; 2019 Oct; 130():104497. PubMed ID: 31176720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotection by urate on the mutant hSOD1-related cellular and Drosophila models of amyotrophic lateral sclerosis: Implication for GSH synthesis via activating Akt/GSK3β/Nrf2/GCLC pathways.
    Zhang C; Yang Y; Liang W; Wang T; Wang S; Wang X; Wang Y; Jiang H; Feng H
    Brain Res Bull; 2019 Mar; 146():287-301. PubMed ID: 30690059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways.
    Blokhuis AM; Koppers M; Groen EJN; van den Heuvel DMA; Dini Modigliani S; Anink JJ; Fumoto K; van Diggelen F; Snelting A; Sodaar P; Verheijen BM; Demmers JAA; Veldink JH; Aronica E; Bozzoni I; den Hertog J; van den Berg LH; Pasterkamp RJ
    Acta Neuropathol; 2016 Aug; 132(2):175-196. PubMed ID: 27164932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA Dysregulation in Amyotrophic Lateral Sclerosis.
    Butti Z; Patten SA
    Front Genet; 2018; 9():712. PubMed ID: 30723494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione S-Transferase Rescues Motor Neuronal Toxicity in Fly Model of Amyotrophic Lateral Sclerosis.
    Cha SJ; Han YJ; Choi HJ; Kim HJ; Kim K
    Antioxidants (Basel); 2020 Jul; 9(7):. PubMed ID: 32674363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of amyotrophic lateral sclerosis.
    Liscic RM; Breljak D
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Mar; 35(2):370-2. PubMed ID: 20655970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disrupted neuronal trafficking in amyotrophic lateral sclerosis.
    Burk K; Pasterkamp RJ
    Acta Neuropathol; 2019 Jun; 137(6):859-877. PubMed ID: 30721407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis.
    Ahn SW; Jeon GS; Kim MJ; Shon JH; Kim JE; Shin JY; Kim SM; Kim SH; Ye IH; Lee KW; Hong YH; Sung JJ
    J Neurol Sci; 2014 May; 340(1-2):112-6. PubMed ID: 24680562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.
    Lu Y; Tang C; Zhu L; Li J; Liang H; Zhang J; Xu R
    Int J Biol Sci; 2016; 12(9):1140-9. PubMed ID: 27570488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do the RNA-binding proteins TDP-43 and FUS relate to amyotrophic lateral sclerosis and frontotemporal degeneration, and to each other?
    Baloh RH
    Curr Opin Neurol; 2012 Dec; 25(6):701-7. PubMed ID: 23041957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis.
    Altanbyek V; Cha SJ; Kang GU; Im DS; Lee S; Kim HJ; Kim K
    Biochem Biophys Res Commun; 2016 Dec; 481(3-4):259-264. PubMed ID: 27810362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic variability and its pathological basis in amyotrophic lateral sclerosis.
    Takeda T; Kitagawa K; Arai K
    Neuropathology; 2020 Feb; 40(1):40-56. PubMed ID: 31802540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophagy Dysregulation in ALS: When Protein Aggregates Get Out of Hand.
    Ramesh N; Pandey UB
    Front Mol Neurosci; 2017; 10():263. PubMed ID: 28878620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Als and Ftd: Insights into the disease mechanisms and therapeutic targets.
    Liscic RM
    Eur J Pharmacol; 2017 Dec; 817():2-6. PubMed ID: 29031901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.
    Perera ND; Turner BJ
    Neurochem Res; 2016 Mar; 41(3):544-53. PubMed ID: 26202426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis.
    Lee JK; Shin JH; Lee JE; Choi EJ
    Biochim Biophys Acta; 2015 Nov; 1852(11):2517-24. PubMed ID: 26264610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research in amyotrophic lateral sclerosis: what is new in 2009?].
    Pradat PF; Attarian S; Camdessanché JP; Carluer L; Cintas P; Corcia P; Echaniz-Laguna A; Gonzalez-Bermejo J; Guy N; Nicolas G; Perez T; Soriani MH; Vandenberghe N; Verschueren A;
    Rev Neurol (Paris); 2010; 166(8-9):683-98. PubMed ID: 20472259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.