These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32993101)
1. Comparison of Acoustic Streaming Flow Patterns Induced by Solid, Liquid and Gas Obstructions. Lu HF; Tien WH Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32993101 [TBL] [Abstract][Full Text] [Related]
2. Mixing enhancement in T-junction microchannel with acoustic streaming induced by triangular structure. Endaylalu SA; Tien WH Biomicrofluidics; 2021 May; 15(3):034102. PubMed ID: 33986902 [TBL] [Abstract][Full Text] [Related]
3. A Numerical Investigation of the Mixing Performance in a Y-Junction Microchannel Induced by Acoustic Streaming. Endaylalu SA; Tien WH Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208462 [TBL] [Abstract][Full Text] [Related]
4. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation. Sajjadi B; Raman AA; Ibrahim S Ultrason Sonochem; 2015 May; 24():193-203. PubMed ID: 25435397 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control. Hashemiesfahan M; Gelin P; Maisto A; Gardeniers H; De Malsche W Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398921 [TBL] [Abstract][Full Text] [Related]
7. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372 [TBL] [Abstract][Full Text] [Related]
8. Characterization of acoustic streaming in water and aluminum melt during ultrasonic irradiation. Yamamoto T; Kubo K; Komarov SV Ultrason Sonochem; 2021 Mar; 71():105381. PubMed ID: 33157358 [TBL] [Abstract][Full Text] [Related]
9. Acoustic Streaming Generated by Sharp Edges: The Coupled Influences of Liquid Viscosity and Acoustic Frequency. Zhang C; Guo X; Royon L; Brunet P Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32580511 [TBL] [Abstract][Full Text] [Related]
10. Numerical Simulation of Boundary-Driven Acoustic Streaming in Microfluidic Channels with Circular Cross-Sections. Lei J; Cheng F; Li K Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111024 [TBL] [Abstract][Full Text] [Related]
11. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles. Hahn P; Leibacher I; Baasch T; Dual J Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531 [TBL] [Abstract][Full Text] [Related]
12. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel. Doinikov AA; Combriat T; Thibault P; Marmottant P Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843 [TBL] [Abstract][Full Text] [Related]
13. Acoustic streaming in micromachined flexural plate wave devices: numerical simulation and experimental verification. Nguyen NT; White RM IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1463-71. PubMed ID: 18238693 [TBL] [Abstract][Full Text] [Related]
14. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Yamashita T; Ando K Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434 [TBL] [Abstract][Full Text] [Related]
15. A Microfluidic Rotational Motor Driven by Circular Vibrations. Uran S; Bratina B; Šafarič R Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31771192 [TBL] [Abstract][Full Text] [Related]
16. Theory and simulation of electroosmotic suppression of acoustic streaming. Winckelmann BG; Bruus H J Acoust Soc Am; 2021 Jun; 149(6):3917. PubMed ID: 34241445 [TBL] [Abstract][Full Text] [Related]
17. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices. Lei J; Glynne-Jones P; Hill M Microfluid Nanofluidics; 2017; 21(2):23. PubMed ID: 32226356 [TBL] [Abstract][Full Text] [Related]
18. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming. Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147 [TBL] [Abstract][Full Text] [Related]
19. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator. Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549 [TBL] [Abstract][Full Text] [Related]
20. Characterization of acoustic droplet formation in a microfluidic flow-focusing device. Cheung YN; Qiu H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066310. PubMed ID: 22304193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]