These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32993283)

  • 1. Lattice Thermal Transport in Monolayer Group 13 Monochalcogenides MX (M = Ga, In; X = S, Se, Te): Interplay of Atomic Mass, Harmonicity, and Lone-Pair-Induced Anharmonicity.
    Nissimagoudar AS; Rashid Z; Ma J; Li W
    Inorg Chem; 2020 Oct; 59(20):14899-14909. PubMed ID: 32993283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys.
    Pandey T; Parker DS; Lindsay L
    Nanotechnology; 2017 Nov; 28(45):455706. PubMed ID: 29039363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing phonon thermal transport in 2H-CrX
    Tang S; Wan D; Bai S; Fu S; Wang X; Li X; Zhang J
    Phys Chem Chem Phys; 2023 Aug; 25(33):22401-22414. PubMed ID: 37581216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: a first principles study.
    Banerjee A; Das BK; Chattopadhyay KK
    Phys Chem Chem Phys; 2022 Jul; 24(26):16065-16074. PubMed ID: 35735192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.
    Guo SD; Liu JT
    Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Lone Pair Expression as Chemical Bonding Origin of Giant Phonon Anharmonicity in Thermoelectric InTe.
    Zhang J; Ishikawa D; Koza MM; Nishibori E; Song L; Baron AQR; Iversen BB
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218458. PubMed ID: 36696593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF.
    Yedukondalu N; Shafique A; Rakesh Roshan SC; Barhoumi M; Muthaiah R; Ehm L; Parise JB; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40738-40748. PubMed ID: 36053500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Thermal Conductivity of Monolayer InSe Calculated by Machine Learning Potential.
    Han J; Zeng Q; Chen K; Yu X; Dai J
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of four-phonon interaction on phonon thermal conductivity of hexagonal VTe
    Jin D; Zhang P; Tian Z; Zhang Z; Yuan Y; Liu Y; Lu Z; Xiong R
    Phys Chem Chem Phys; 2023 Nov; 25(42):28669-28676. PubMed ID: 37849319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow lattice thermal conductivity of binary compounds A
    Zeng S; Fang L; Tu Y; Zulfiqar M; Li G
    Phys Chem Chem Phys; 2023 May; 25(17):12157-12164. PubMed ID: 37070719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X
    Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A
    J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32340009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS
    Shafique A; Samad A; Shin YH
    Phys Chem Chem Phys; 2017 Aug; 19(31):20677-20683. PubMed ID: 28737780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals.
    Kocabaş T; Çakır D; Gülseren O; Ay F; Kosku Perkgöz N; Sevik C
    Nanoscale; 2018 Apr; 10(16):7803-7812. PubMed ID: 29664085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressed Lone Pair Electrons Explain Unconventional Rise of Lattice Thermal Conductivity in Defective Crystalline Solids.
    Jang H; Toriyama MY; Abbey S; Frimpong B; Snyder GJ; Jung YS; Oh MW
    Adv Sci (Weinh); 2024 Jun; 11(24):e2308075. PubMed ID: 38626376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of non-analytical corrections on the phononic thermal transport in InX (X = S, Se, Te) monolayers.
    Shafique A; Shin YH
    Sci Rep; 2020 Jan; 10(1):1093. PubMed ID: 31974441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Temperature-Dependent Phonon Anharmonicity and Thermal Transport in SnS Single Crystals.
    Li J; Yan T; Gong X; Zou H; Zhang B; Wu H; Wang G; Zhou X
    J Phys Chem Lett; 2023 Aug; 14(33):7346-7353. PubMed ID: 37561607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal transport in monolayer InSe.
    Nissimagoudar AS; Ma J; Chen Y; Li W
    J Phys Condens Matter; 2017 Aug; 29(33):335702. PubMed ID: 28644149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP
    Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J
    Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.