These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32993429)

  • 21. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins.
    Mizuno R; Koller A; Kaley G
    Am J Physiol; 1998 Mar; 274(3):R790-6. PubMed ID: 9530247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Minimally invasive method for determining the effective lymphatic pumping pressure in rats using near-infrared imaging.
    Nelson TS; Akin RE; Weiler MJ; Kassis T; Kornuta JA; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2014 Mar; 306(5):R281-90. PubMed ID: 24430884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postprandial lymphatic pump function after a high-fat meal: a characterization of contractility, flow, and viscosity.
    Kassis T; Yarlagadda SC; Kohan AB; Tso P; Breedveld V; Dixon JB
    Am J Physiol Gastrointest Liver Physiol; 2016 May; 310(10):G776-89. PubMed ID: 26968208
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanobiology of lymphatic contractions.
    Munn LL
    Semin Cell Dev Biol; 2015 Feb; 38():67-74. PubMed ID: 25636584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pro-inflammatory cytokine TNF-α inhibits lymphatic pumping via activation of the NF-κB-iNOS signaling pathway.
    Chen Y; Rehal S; Roizes S; Zhu HL; Cole WC; von der Weid PY
    Microcirculation; 2017 Apr; 24(3):. PubMed ID: 28231612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Confocal image-based computational modeling of nitric oxide transport in a rat mesenteric lymphatic vessel.
    Wilson JT; Wang W; Hellerstedt AH; Zawieja DC; Moore JE
    J Biomech Eng; 2013 May; 135(5):51005. PubMed ID: 24231961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.
    Jamalian S; Davis MJ; Zawieja DC; Moore JE
    PLoS One; 2016; 11(2):e0148384. PubMed ID: 26845031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [ATP-sensitive potassium channel involved in modulation of nitride oxide regulating contractile activity of isolated lymphatics from hemorrhagic shock rats].
    Zhang LM; Niu CY; Zhao ZG; Si YH; Zhang YP
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Aug; 24(8):457-60. PubMed ID: 22871402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Nitric oxide modulates biphasic changes of isolated lymphatic contraction in hemorrhagic shock rats].
    Qin LP; Niu CY; Zhao ZG; Zhang J; Zhang YP
    Sheng Li Xue Bao; 2011 Aug; 63(4):367-76. PubMed ID: 21861057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consequences of intravascular lymphatic valve properties: a study of contraction timing in a multi-lymphangion model.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Am J Physiol Heart Circ Physiol; 2016 Apr; 310(7):H847-60. PubMed ID: 26747501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contraction of collecting lymphatics: organization of pressure-dependent rate for multiple lymphangions.
    Bertram CD; Macaskill C; Davis MJ; Moore JE
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1513-1532. PubMed ID: 29948540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(1):H60-70. PubMed ID: 26519032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.
    Solari E; Marcozzi C; Negrini D; Moriondo A
    Am J Physiol Heart Circ Physiol; 2017 Nov; 313(5):H879-H889. PubMed ID: 28778912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence that the L-arginine pathway plays a role in the regulation of pumping activity in bovine mesenteric lymphatic vessels.
    Eisenhoffer J; Yuan ZY; Johnston MG
    Microvasc Res; 1995 Sep; 50(2):249-59. PubMed ID: 8538504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of nitric oxide and reactive oxygen species on rat diaphragm contractility.
    Lawler JM; Hu Z
    Acta Physiol Scand; 2000 Jul; 169(3):229-36. PubMed ID: 10886037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lymphatic remodelling in response to lymphatic injury in the hind limbs of sheep.
    Nelson TS; Nepiyushchikh Z; Hooks JST; Razavi MS; Lewis T; Clement CC; Thoresen M; Cribb MT; Ross MK; Gleason RL; Santambrogio L; Peroni JF; Dixon JB
    Nat Biomed Eng; 2020 Jun; 4(6):649-661. PubMed ID: 31873209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in L-type Ca
    Zawieja SD; Castorena-Gonzalez JA; Scallan JP; Davis MJ
    Am J Physiol Heart Circ Physiol; 2018 May; 314(5):H991-H1010. PubMed ID: 29351458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiologic aspects of lymphatic contractile function: current perspectives.
    Gashev AA
    Ann N Y Acad Sci; 2002 Dec; 979():178-87; discussion 188-96. PubMed ID: 12543727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms underlying the effect of E. coli endotoxin on contractile function of lymphatic vessels.
    Lobov GI; Kubyshkina NA
    Bull Exp Biol Med; 2004 Feb; 137(2):114-6. PubMed ID: 15273751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.