These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32993494)
1. Differential expression in leaves of Saccharum genotypes contrasting in biomass production provides evidence of genes involved in carbon partitioning. Correr FH; Hosaka GK; Barreto FZ; Valadão IB; Balsalobre TWA; Furtado A; Henry RJ; Carneiro MS; Margarido GRA BMC Genomics; 2020 Sep; 21(1):673. PubMed ID: 32993494 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. Ma P; Zhang X; Chen L; Zhao Q; Zhang Q; Hua X; Wang Z; Tang H; Yu Q; Zhang M; Ming R; Zhang J BMC Plant Biol; 2020 Sep; 20(1):422. PubMed ID: 32928111 [TBL] [Abstract][Full Text] [Related]
3. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage. Chandra A; Verma PK; Islam MN; Grisham MP; Jain R; Sharma A; Roopendra K; Singh K; Singh P; Verma I; Solomon S Plant Biol (Stuttg); 2015 May; 17(3):608-17. PubMed ID: 25311688 [TBL] [Abstract][Full Text] [Related]
4. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. Souza GM; Van Sluys MA; Lembke CG; Lee H; Margarido GRA; Hotta CT; Gaiarsa JW; Diniz AL; Oliveira MM; Ferreira SS; Nishiyama MY; Ten-Caten F; Ragagnin GT; Andrade PM; de Souza RF; Nicastro GG; Pandya R; Kim C; Guo H; Durham AM; Carneiro MS; Zhang J; Zhang X; Zhang Q; Ming R; Schatz MC; Davidson B; Paterson AH; Heckerman D Gigascience; 2019 Dec; 8(12):. PubMed ID: 31782791 [TBL] [Abstract][Full Text] [Related]
5. Association of variation in the sugarcane transcriptome with sugar content. Thirugnanasambandam PP; Hoang NV; Furtado A; Botha FC; Henry RJ BMC Genomics; 2017 Nov; 18(1):909. PubMed ID: 29178834 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the diversity and tissue specificity of sucrose synthase genes in the long read transcriptome of sugarcane. Thirugnanasambandam PP; Mason PJ; Hoang NV; Furtado A; Botha FC; Henry RJ BMC Plant Biol; 2019 Apr; 19(1):160. PubMed ID: 31023213 [TBL] [Abstract][Full Text] [Related]
7. Effect of sugar feedback regulation on major genes and proteins of photosynthesis in sugarcane leaves. Marquardt A; Henry RJ; Botha FC Plant Physiol Biochem; 2021 Jan; 158():321-333. PubMed ID: 33250321 [TBL] [Abstract][Full Text] [Related]
8. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families. Casu RE; Rae AL; Nielsen JM; Perroux JM; Bonnett GD; Manners JM Plant Mol Biol; 2015 Dec; 89(6):607-28. PubMed ID: 26456093 [TBL] [Abstract][Full Text] [Related]
10. Sucrose-phosphate phosphatase from sugarcane reveals an ancestral tandem duplication. Partida VGS; Dias HM; Corcino DSM; Van Sluys MA BMC Plant Biol; 2021 Jan; 21(1):23. PubMed ID: 33413115 [TBL] [Abstract][Full Text] [Related]
11. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. Wai CM; Zhang J; Jones TC; Nagai C; Ming R BMC Genomics; 2017 Oct; 18(1):773. PubMed ID: 29020919 [TBL] [Abstract][Full Text] [Related]
12. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink. Chong BF; Bonnett GD; Glassop D; O'Shea MG; Brumbley SM Plant Biotechnol J; 2007 Mar; 5(2):240-53. PubMed ID: 17309679 [TBL] [Abstract][Full Text] [Related]
13. Characterization of full-length transcriptome in Saccharum officinarum and molecular insights into tiller development. Yan H; Zhou H; Luo H; Fan Y; Zhou Z; Chen R; Luo T; Li X; Liu X; Li Y; Qiu L; Wu J BMC Plant Biol; 2021 May; 21(1):228. PubMed ID: 34022806 [TBL] [Abstract][Full Text] [Related]
14. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Calsa T; Figueira A Plant Mol Biol; 2007 Apr; 63(6):745-62. PubMed ID: 17211512 [TBL] [Abstract][Full Text] [Related]
15. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126 [TBL] [Abstract][Full Text] [Related]
16. Haplotype analysis of sucrose synthase gene family in three Saccharum species. Zhang J; Arro J; Chen Y; Ming R BMC Genomics; 2013 May; 14():314. PubMed ID: 23663250 [TBL] [Abstract][Full Text] [Related]
17. Exogenous sucrose supply changes sugar metabolism and reduces photosynthesis of sugarcane through the down-regulation of Rubisco abundance and activity. Lobo AK; de Oliveira Martins M; Lima Neto MC; Machado EC; Ribeiro RV; Silveira JA J Plant Physiol; 2015 May; 179():113-21. PubMed ID: 25863283 [TBL] [Abstract][Full Text] [Related]
18. The subgenome Saccharum spontaneum contributes to sugar accumulation in sugarcane as revealed by full-length transcriptomic analysis. Zhao J; Li S; Xu Y; Ahmad N; Kuang B; Feng M; Wei N; Yang X J Adv Res; 2023 Dec; 54():1-13. PubMed ID: 36781019 [TBL] [Abstract][Full Text] [Related]
19. Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. Chen Z; Qin C; Wang M; Liao F; Liao Q; Liu X; Li Y; Lakshmanan P; Long M; Huang D BMC Plant Biol; 2019 Jun; 19(1):285. PubMed ID: 31253103 [TBL] [Abstract][Full Text] [Related]
20. Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa. Padhi S; Grimes MM; Muro-Villanueva F; Ortega JL; Sengupta-Gopalan C Planta; 2019 Nov; 250(5):1743-1755. PubMed ID: 31422508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]