These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 3299368)
1. Organization and nucleotide sequence determination of a gene cluster involved in 3-chlorocatechol degradation. Frantz B; Chakrabarty AM Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4460-4. PubMed ID: 3299368 [TBL] [Abstract][Full Text] [Related]
2. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. van der Meer JR; Eggen RI; Zehnder AJ; de Vos WM J Bacteriol; 1991 Apr; 173(8):2425-34. PubMed ID: 2013566 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Ghosal D; You IS Mol Gen Genet; 1988 Jan; 211(1):113-20. PubMed ID: 2830460 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide sequence and expression of clcD, a plasmid-borne dienelactone hydrolase gene from Pseudomonas sp. strain B13. Frantz B; Ngai KL; Chatterjee DK; Ornston LN; Chakrabarty AM J Bacteriol; 1987 Feb; 169(2):704-9. PubMed ID: 3804974 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence. Eulberg D; Kourbatova EM; Golovleva LA; Schlömann M J Bacteriol; 1998 Mar; 180(5):1082-94. PubMed ID: 9495745 [TBL] [Abstract][Full Text] [Related]
7. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Liu S; Ogawa N; Miyashita K Gene; 2001 May; 268(1-2):207-14. PubMed ID: 11368916 [TBL] [Abstract][Full Text] [Related]
8. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. Moiseeva OV; Solyanikova IP; Kaschabek SR; Gröning J; Thiel M; Golovleva LA; Schlömann M J Bacteriol; 2002 Oct; 184(19):5282-92. PubMed ID: 12218013 [TBL] [Abstract][Full Text] [Related]
9. Cloning and sequence analysis of two catechol-degrading gene clusters from the aniline-assimilating bacterium Frateuria species ANA-18. Murakami S; Takashima A; Takemoto J; Takenaka S; Shinke R; Aoki K Gene; 1999 Jan; 226(2):189-98. PubMed ID: 9931486 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. van der Meer JR; Frijters AC; Leveau JH; Eggen RI; Zehnder AJ; de Vos WM J Bacteriol; 1991 Jun; 173(12):3700-8. PubMed ID: 2050630 [TBL] [Abstract][Full Text] [Related]
11. Cloning and expression of the catA and catBC gene clusters from Pseudomonas aeruginosa PAO. Kukor JJ; Olsen RH; Ballou DP J Bacteriol; 1988 Oct; 170(10):4458-65. PubMed ID: 3139626 [TBL] [Abstract][Full Text] [Related]
12. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. Mars AE; Kingma J; Kaschabek SR; Reineke W; Janssen DB J Bacteriol; 1999 Feb; 181(4):1309-18. PubMed ID: 9973359 [TBL] [Abstract][Full Text] [Related]
13. New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. Nikodem P; Hecht V; Schlömann M; Pieper DH J Bacteriol; 2003 Dec; 185(23):6790-800. PubMed ID: 14617643 [TBL] [Abstract][Full Text] [Related]
14. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Franklin FC; Bagdasarian M; Bagdasarian MM; Timmis KN Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7458-62. PubMed ID: 6950388 [TBL] [Abstract][Full Text] [Related]
15. Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Schlömann M Biodegradation; 1994 Dec; 5(3-4):301-21. PubMed ID: 7765840 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning of 3-phenylcatechol dioxygenase involved in the catabolic pathway of chlorinated biphenyl from Pseudomonas putida and its expression in Escherichia coli. Khan A; Tewari R; Walia S Appl Environ Microbiol; 1988 Nov; 54(11):2664-71. PubMed ID: 3063207 [TBL] [Abstract][Full Text] [Related]
17. Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. Ghosal D; You IS Gene; 1989 Nov; 83(2):225-32. PubMed ID: 2583528 [TBL] [Abstract][Full Text] [Related]
18. Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. Eulberg D; Golovleva LA; Schlömann M J Bacteriol; 1997 Jan; 179(2):370-81. PubMed ID: 8990288 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. Kasak L; Hôrak R; Nurk A; Talvik K; Kivisaar M J Bacteriol; 1993 Dec; 175(24):8038-42. PubMed ID: 8253692 [TBL] [Abstract][Full Text] [Related]
20. Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Kivisaar M; Kasak L; Nurk A Gene; 1991 Feb; 98(1):15-20. PubMed ID: 2013408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]