These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32993985)
1. Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Nevado P; Lopera A; Bezzon V; Fulla MR; Palacio J; Zaghete MA; Biasotto G; Montoya A; Rivera J; Robledo SM; Estupiñan H; Paucar C; Garcia C Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111013. PubMed ID: 32993985 [TBL] [Abstract][Full Text] [Related]
2. [Influence of different sintering temperatures on mesoporous structure and ectopic osteogenesis of biphasic calcium phosphate ceramic granule materials]. Zhang D; Zong X; Guo X; Du H; Song G; Jin X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jan; 35(1):95-103. PubMed ID: 33448206 [TBL] [Abstract][Full Text] [Related]
3. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
4. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds. Elhattab K; Bhaduri SB; Lawrence JG; Sikder P ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414 [TBL] [Abstract][Full Text] [Related]
5. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications. Zarei M; Hasanzadeh Azar M; Sayedain SS; Shabani Dargah M; Alizadeh R; Arab M; Askarinya A; Kaviani A; Beheshtizadeh N; Azami M Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284 [TBL] [Abstract][Full Text] [Related]
6. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921 [TBL] [Abstract][Full Text] [Related]
7. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics. França R; Samani TD; Bayade G; Yahia L; Sacher E J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
9. Preliminary studies of PVA/PVP blends incorporated with HAp and β-TCP bone ceramic as template for hard tissue engineering. Uma Maheshwari S; Govindan K; Raja M; Raja A; Pravin MBS; Vasanth Kumar S Biomed Mater Eng; 2017; 28(4):401-415. PubMed ID: 28869428 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097 [TBL] [Abstract][Full Text] [Related]
11. Comparison between calcium carbonate and β-tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix. Donate R; Monzón M; Ortega Z; Wang L; Ribeiro V; Pestana D; Oliveira JM; Reis RL J Tissue Eng Regen Med; 2020 Feb; 14(2):272-283. PubMed ID: 31733089 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of the natural genesis of β-TCP/HAp phases in postnatal fishbones towards gold standard biocomposites for bone regeneration. Weinand WR; Cruz JA; Medina AN; Lima WM; Sato F; da Silva Palacios R; Gibin MS; Volnistem EA; Rosso JM; Santos IA; Rohling JH; Bento AC; Baesso ML; da Silva CG; Dos Santos EX; Scatolim DB; Gavazzoni A; Queiroz AF; Companhoni MVP; Nakamura TU; Hernandes L; Bonadio TGM; Miranda LCM Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121407. PubMed ID: 35636138 [TBL] [Abstract][Full Text] [Related]
13. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914 [TBL] [Abstract][Full Text] [Related]
14. Porous Biphasic Calcium Phosphate Granules from Oyster Shell Promote the Differentiation of Induced Pluripotent Stem Cells. Ho WF; Lee MH; Thomas JL; Li JA; Wu SC; Hsu HC; Lin HY Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502354 [TBL] [Abstract][Full Text] [Related]
15. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558 [TBL] [Abstract][Full Text] [Related]
16. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication. Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of two novel osteoinductive fishbone-derived biphasic calcium phosphate bone graft substitutes. Zhu Q; Chen T; Xia J; Jiang D; Wang S; Zhang Y J Biomater Appl; 2022 Oct; 37(4):600-613. PubMed ID: 35775433 [TBL] [Abstract][Full Text] [Related]
18. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
19. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers. Podgórski R; Wojasiński M; Trepkowska-Mejer E; Ciach T Biomater Adv; 2023 Mar; 146():213317. PubMed ID: 36738523 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]