BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32993998)

  • 1. In situ synthesized TiO
    Kianpour G; Bagheri R; Pourjavadi A; Ghanbari H
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111043. PubMed ID: 32993998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic polyurethane/TiO
    Zhu Q; Li X; Fan Z; Xu Y; Niu H; Li C; Dang Y; Huang Z; Wang Y; Guan J
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():79-87. PubMed ID: 29407160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair.
    Saber-Samandari S; Yekta H; Ahmadi S; Alamara K
    Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():783-792. PubMed ID: 28629081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering.
    Griffin M; Kalaskar D; Butler P
    J Nanobiotechnology; 2019 Apr; 17(1):51. PubMed ID: 30954085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining.
    Davoudi P; Assadpour S; Derakhshan MA; Ai J; Solouk A; Ghanbari H
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():213-221. PubMed ID: 28866159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for preparation of lignin/TiO
    Yuan Z; Shang X; Fang J; Li H
    Int J Biol Macromol; 2022 Feb; 198():18-25. PubMed ID: 34963624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposites for potential wound dressing applications.
    Jafari A; Hassanajili S; Karimi MB; Emami A; Ghaffari F; Azarpira N
    J Mech Behav Biomed Mater; 2018 Dec; 88():395-405. PubMed ID: 30212687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyurethane/polyurethane nanoparticle-modified expanded poly(tetrafluoroethylene) vascular patches promote endothelialization.
    Zhang J; Wang Y; Liu C; Feng F; Wang D; Mo H; Si L; Wei G; Shen J
    J Biomed Mater Res A; 2018 Aug; 106(8):2131-2140. PubMed ID: 29633582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ preparation and osteogenic properties of bionanocomposite scaffolds based on aliphatic polyurethane and bioactive glass nanoparticles.
    Covarrubias C; Agüero A; Maureira M; Morelli E; Escobar G; Cuadra F; Peñafiel C; Von Marttens A
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():642-653. PubMed ID: 30606576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel fluoridated silk fibroin/ TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():265-276. PubMed ID: 29025657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering.
    Luo W; Cheng L; Yuan C; Wu Z; Yuan G; Hou M; Chen JY; Luo C; Li W
    Int J Biol Macromol; 2019 Aug; 134():469-479. PubMed ID: 31078594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration.
    Lee TH; Yen CT; Hsu SH
    ACS Biomater Sci Eng; 2020 Jan; 6(1):597-609. PubMed ID: 33463202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites.
    Hess C; Schwenke A; Wagener P; Franzka S; Laszlo Sajti C; Pflaum M; Wiegmann B; Haverich A; Barcikowski S
    J Biomed Mater Res A; 2014 Jun; 102(6):1909-20. PubMed ID: 23852964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving environmental protection of waterborne polyurethane coating by adding TiO
    Nosrati R; Kiani G; Karimzad Ghavidel A; Rashidi A
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6438-6448. PubMed ID: 31873879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.
    Shanmugam M; Alsalme A; Alghamdi A; Jayavel R
    J Photochem Photobiol B; 2016 Oct; 163():216-23. PubMed ID: 27588719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic TiO
    Kolathupalayam Shanmugam B; Rangaraj S; Subramani K; Srinivasan S; Aicher WK; Venkatachalam R
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110710. PubMed ID: 32204022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide.
    Li N; Fan X; Tang K; Zheng X; Liu J; Wang B
    Colloids Surf B Biointerfaces; 2016 Apr; 140():287-296. PubMed ID: 26764111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.