These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32993998)

  • 21. Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications.
    Jing X; Mi HY; Salick MR; Cordie TM; Peng XF; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():40-50. PubMed ID: 25686925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO-TiO
    Vedhanayagam M; Anandasadagopan S; Nair BU; Sreeram KJ
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110378. PubMed ID: 31924005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyurethane Elastomer Layered Nanocomposite Material for Sports Grounds and the Preparation Method Thereof.
    Ren C; Su Z; Su Y; Wang L
    Biomed Res Int; 2022; 2022():5152911. PubMed ID: 36093408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: a preliminary assessment of endothelial cell adhesion and haemocompatibility.
    Solouk A; Cousins BG; Mirahmadi F; Mirzadeh H; Nadoushan MR; Shokrgozar MA; Seifalian AM
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():400-8. PubMed ID: 25492004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft.
    de Mel A; Punshon G; Ramesh B; Sarkar S; Darbyshire A; Hamilton G; Seifalian AM
    Biomed Mater Eng; 2009; 19(4-5):317-31. PubMed ID: 20042799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.
    Hausner T; Schmidhammer R; Zandieh S; Hopf R; Schultz A; Gogolewski S; Hertz H; Redl H
    Acta Neurochir Suppl; 2007; 100():69-72. PubMed ID: 17985549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resveratrol-loaded polyurethane nanofibrous scaffold: viability of endothelial and smooth muscle cells.
    Asadpour S; Yeganeh H; Khademi F; Ghanbari H; Ai J
    Biomed Mater; 2019 Nov; 15(1):015001. PubMed ID: 31618720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of poly(vinyl alcohol)-TiO2 nanocomposite films for orthopedic applications.
    Mohanapriya S; Mumjitha M; PurnaSai K; Raj V
    J Mech Behav Biomed Mater; 2016 Oct; 63():141-156. PubMed ID: 27371870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A PC-PU nanoparticle/PU/decellularized scaffold composite vascular patch: Synergistically optimized overall performance promotes endothelialization.
    Zhang J; Liu C; Feng F; Wang D; Lu S; Wei G; Mo H; Qiao T
    Colloids Surf B Biointerfaces; 2017 Dec; 160():192-200. PubMed ID: 28934662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering.
    Shokraei N; Asadpour S; Shokraei S; Nasrollahzadeh Sabet M; Faridi-Majidi R; Ghanbari H
    Microsc Res Tech; 2019 Aug; 82(8):1316-1325. PubMed ID: 31062449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications.
    Ayyar M; Mani MP; Jaganathan SK; Rathanasamy R
    Biomed Tech (Berl); 2018 Jun; 63(3):245-253. PubMed ID: 28678733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.
    Mi HY; Jing X; Salick MR; Cordie TM; Turng LS
    J Mech Behav Biomed Mater; 2016 Sep; 62():417-427. PubMed ID: 27266475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanically Stiff, Zinc Cross-Linked Nanocomposite Scaffolds with Improved Osteostimulation and Antibacterial Properties.
    Sehgal RR; Carvalho E; Banerjee R
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13735-47. PubMed ID: 27176647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of polyvinyl alcohol/metal (Ca, Mg, Ti) doped zirconium phosphate nanocomposite films for scaffold-guided tissue engineering application.
    Kalita H; Pal P; Dhara S; Pathak A
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():363-371. PubMed ID: 27987719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanofibrous vascular scaffold prepared from miscible polymer blend with heparin/stromal cell-derived factor-1 alpha for enhancing anticoagulation and endothelialization.
    Wang W; Liu D; Li D; Du H; Zhang J; You Z; Li M; He C
    Colloids Surf B Biointerfaces; 2019 Sep; 181():963-972. PubMed ID: 31382347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospun polyurethane/poly (ɛ-caprolactone) nanofibers promoted the attachment and growth of human endothelial cells in static and dynamic culture conditions.
    Karkan SF; Rahbarghazi R; Davaran S; Kaleybar LS; Khoshfetrat AB; Heidarzadeh M; Zolali E; Akbarzadeh A
    Microvasc Res; 2021 Jan; 133():104073. PubMed ID: 32949575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation.
    Ganji Y; Li Q; Quabius ES; Böttner M; Selhuber-Unkel C; Kasra M
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():10-18. PubMed ID: 26652343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PHBV-TiO
    Braga NF; Vital DA; Guerrini LM; Lemes AP; Formaggio DMD; Tada DB; Arantes TM; Cristovan FH
    Biopolymers; 2018 May; 109(5):e23120. PubMed ID: 29704425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.