These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32994184)

  • 1. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a.
    Le CT; Nguyen TL; Nguyen TD; Nguyen TA
    RNA; 2020 Dec; 26(12):1777-1786. PubMed ID: 32994184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
    Kim K; Nguyen TD; Li S; Nguyen TA
    RNA; 2018 Jul; 24(7):892-898. PubMed ID: 29615481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing.
    Kwon SC; Baek SC; Choi YG; Yang J; Lee YS; Woo JS; Kim VN
    Mol Cell; 2019 Feb; 73(3):505-518.e5. PubMed ID: 30554947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.
    Roth BM; Ishimaru D; Hennig M
    J Biol Chem; 2013 Sep; 288(37):26785-99. PubMed ID: 23893406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA.
    Partin AC; Zhang K; Jeong BC; Herrell E; Li S; Chiu W; Nam Y
    Mol Cell; 2020 May; 78(3):411-422.e4. PubMed ID: 32220646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulges control pri-miRNA processing in a position and strand-dependent manner.
    Li S; Le TN; Nguyen TD; Trinh TA; Nguyen TA
    RNA Biol; 2021 Nov; 18(11):1716-1726. PubMed ID: 33382955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Anatomy of the Human Microprocessor.
    Nguyen TA; Jo MH; Choi YG; Park J; Kwon SC; Hohng S; Kim VN; Woo JS
    Cell; 2015 Jun; 161(6):1374-87. PubMed ID: 26027739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Basis for pri-miRNA Recognition by Drosha.
    Jin W; Wang J; Liu CP; Wang HW; Xu RM
    Mol Cell; 2020 May; 78(3):423-433.e5. PubMed ID: 32220645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures.
    Faller M; Toso D; Matsunaga M; Atanasov I; Senturia R; Chen Y; Zhou ZH; Guo F
    RNA; 2010 Aug; 16(8):1570-83. PubMed ID: 20558544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA.
    Burke JM; Kelenis DP; Kincaid RP; Sullivan CS
    RNA; 2014 Jul; 20(7):1068-77. PubMed ID: 24854622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of a peptoid ligand with the apical loop of pri-miR-21 inhibits cleavage by Drosha.
    Diaz JP; Chirayil R; Chirayil S; Tom M; Head KJ; Luebke KJ
    RNA; 2014 Apr; 20(4):528-39. PubMed ID: 24497550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pri-miRNA cleavage assays for the Microprocessor complex.
    Le TN; Le CT; Nguyen TA
    Methods Enzymol; 2023; 692():217-230. PubMed ID: 37925180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of the Caenorhabditis elegans Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Nguyen TA
    Nucleic Acids Res; 2023 Feb; 51(4):1512-1527. PubMed ID: 36598924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires.
    Bofill-De Ros X; Kasprzak WK; Bhandari Y; Fan L; Cavanaugh Q; Jiang M; Dai L; Yang A; Shao TJ; Shapiro BA; Wang YX; Gu S
    Cell Rep; 2019 Jan; 26(2):447-459.e4. PubMed ID: 30625327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinase ABL phosphorylates the microprocessor subunit DGCR8 to stimulate primary microRNA processing in response to DNA damage.
    Tu CC; Zhong Y; Nguyen L; Tsai A; Sridevi P; Tarn WY; Wang JY
    Sci Signal; 2015 Jun; 8(383):ra64. PubMed ID: 26126715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates.
    Kim B; Jeong K; Kim VN
    Mol Cell; 2017 Apr; 66(2):258-269.e5. PubMed ID: 28431232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site.
    Ma H; Wu Y; Choi JG; Wu H
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20687-92. PubMed ID: 24297910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncanonical processing by animal Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Le TN; Nguyen TA
    Mol Cell; 2023 Jun; 83(11):1810-1826.e8. PubMed ID: 37267903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs.
    Partin AC; Ngo TD; Herrell E; Jeong BC; Hon G; Nam Y
    Nat Commun; 2017 Nov; 8(1):1737. PubMed ID: 29170488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The insertion in the double-stranded RNA binding domain of human Drosha is important for its function.
    Zhang X; Li P; Lin J; Huang H; Yin B; Zeng Y
    Biochim Biophys Acta Gene Regul Mech; 2017 Dec; 1860(12):1179-1188. PubMed ID: 29109067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.