BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32994436)

  • 1. Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis.
    Foulquier E; Pompeo F; Byrne D; Fierobe HP; Galinier A
    Sci Rep; 2020 Sep; 10(1):15938. PubMed ID: 32994436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis.
    Patel V; Wu Q; Chandrangsu P; Helmann JD
    PLoS Genet; 2018 Sep; 14(9):e1007689. PubMed ID: 30248093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Listeria monocytogenes GlmR Is an Accessory Uridyltransferase Essential for Cytosolic Survival and Virulence.
    Pensinger DA; Gutierrez KV; Smith HB; Vincent WJB; Stevenson DS; Black KA; Perez-Medina KM; Dillard JP; Rhee KY; Amador-Noguez D; Huynh TN; Sauer JD
    mBio; 2023 Apr; 14(2):e0007323. PubMed ID: 36939339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine.
    Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L
    ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine.
    Rodríguez-Díaz J; Rubio-del-Campo A; Yebra MJ
    Biotechnol Bioeng; 2012 Jul; 109(7):1704-12. PubMed ID: 22383248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory insights into the production of UDP-N-acetylglucosamine by Lactobacillus casei.
    Rodríguez-Díaz J; Rubio-Del-Campo A; Yebra MJ
    Bioengineered; 2012; 3(6):339-42. PubMed ID: 22825354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of YvcJ, a conserved P-loop-containing protein, and its implication in competence in Bacillus subtilis.
    Luciano J; Foulquier E; Fantino JR; Galinier A; Pompeo F
    J Bacteriol; 2009 Mar; 191(5):1556-64. PubMed ID: 19074378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient chemoenzymatic synthesis of uridine 5'-diphosphate N-acetylglucosamine and uridine 5'-diphosphate N-trifluoacetyl glucosamine with three recombinant enzymes.
    Li X; Qi C; Wei P; Huang L; Cai J; Xu Z
    Prep Biochem Biotechnol; 2017 Oct; 47(9):852-859. PubMed ID: 27220687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YvcK, a protein required for cell wall integrity and optimal carbon source utilization, binds uridine diphosphate-sugars.
    Foulquier E; Galinier A
    Sci Rep; 2017 Jun; 7(1):4139. PubMed ID: 28646159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis.
    Oikari S; Makkonen K; Deen AJ; Tyni I; Kärnä R; Tammi RH; Tammi MI
    Glycobiology; 2016 Jul; 26(7):710-22. PubMed ID: 26887390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans.
    Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W
    J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine glycosylation regulates UDP-GlcNAc biosynthesis in Salmonella enterica.
    El Qaidi S; Scott NE; Hays MP; Hardwidge PR
    Sci Rep; 2022 Mar; 12(1):5293. PubMed ID: 35351940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient method for production of uridine 5'-diphospho-N-acetylglucosamine.
    Okuyama K; Hamamoto T; Ishige K; Takenouchi K; Noguchi T
    Biosci Biotechnol Biochem; 2000 Feb; 64(2):386-92. PubMed ID: 10737197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a Direct Biosynthetic Pathway for UDP-
    Dadashipour M; Iwamoto M; Hossain MM; Akutsu JI; Zhang Z; Kawarabayasi Y
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc.
    Miszkiel A; Wojciechowski M; Milewski S
    J Mol Model; 2011 Dec; 17(12):3103-15. PubMed ID: 21360186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetamido sugar biosynthesis in the Euryarchaea.
    Namboori SC; Graham DE
    J Bacteriol; 2008 Apr; 190(8):2987-96. PubMed ID: 18263721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of wall polymers in Bacillus subtilis.
    Wyke AW; Ward JB
    J Bacteriol; 1977 Jun; 130(3):1055-63. PubMed ID: 405370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highlights of glucosamine-6P synthase catalysis.
    Durand P; Golinelli-Pimpaneau B; Mouilleron S; Badet B; Badet-Denisot MA
    Arch Biochem Biophys; 2008 Jun; 474(2):302-17. PubMed ID: 18279655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of UDP-sugar transport into intracellular vesicles. Occurrence of UDP-GlcNAc/UDP and UDP-Gal/UDP antiports.
    Cecchelli R; Cacan R; Verbert A
    FEBS Lett; 1986 Nov; 208(2):407-12. PubMed ID: 3780976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of N-acetyl-D-glucosamine from UDP-N-acetyl-D-glucosamine by isolated membranes of Bacillus subtilis. Identification of undecaprenyl poly(N-acetylglucosaminyl pyrophosphate).
    Bettinger GE; Chatterjee AN; Young FE
    J Biol Chem; 1977 Jun; 252(12):4118-24. PubMed ID: 405389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.