These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32994506)

  • 1. Harnessing endogenous repair mechanisms for targeted gene knock-in of bovine embryos.
    Owen JR; Hennig SL; McNabb BR; Lin JC; Young AE; Murray JD; Ross PJ; Van Eenennaam AL
    Sci Rep; 2020 Sep; 10(1):16031. PubMed ID: 32994506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes.
    Owen JR; Hennig SL; McNabb BR; Mansour TA; Smith JM; Lin JC; Young AE; Trott JF; Murray JD; Delany ME; Ross PJ; Van Eenennaam AL
    BMC Genomics; 2021 Feb; 22(1):118. PubMed ID: 33581720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of zebrafish knock-in reporter lines in the nefma gene by Cas9-mediated homologous recombination.
    Eschstruth A; Schneider-Maunoury S; Giudicelli F
    Genesis; 2020 Jan; 58(1):e23340. PubMed ID: 31571409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T
    Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology-mediated end joining-based targeted integration using CRISPR/Cas9.
    Yao X; Wang X; Hu X; Liu Z; Liu J; Zhou H; Shen X; Wei Y; Huang Z; Ying W; Wang Y; Nie YH; Zhang CC; Li S; Cheng L; Wang Q; Wu Y; Huang P; Sun Q; Shi L; Yang H
    Cell Res; 2017 Jun; 27(6):801-814. PubMed ID: 28524166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods.
    Rezazade Bazaz M; Dehghani H
    Life Sci; 2022 Apr; 295():120409. PubMed ID: 35182556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RS-1 enhances CRISPR-mediated targeted knock-in in bovine embryos.
    Lamas-Toranzo I; Martínez-Moro A; O Callaghan E; Millán-Blanca G; Sánchez JM; Lonergan P; Bermejo-Álvarez P
    Mol Reprod Dev; 2020 May; 87(5):542-549. PubMed ID: 32227559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals.
    Singh S; Chaudhary R; Deshmukh R; Tiwari S
    Plant Mol Biol; 2023 Jan; 111(1-2):1-20. PubMed ID: 36315306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Large Fragment Knock-In Mouse Models by Microinjecting into 2-Cell Stage Embryos.
    Gu B; Gertsenstein M; Posfai E
    Methods Mol Biol; 2020; 2066():89-100. PubMed ID: 31512209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for generation of mice via CRISPR/HDR-mediated knock-in.
    Mathew SM
    Mol Biol Rep; 2023 Apr; 50(4):3189-3204. PubMed ID: 36701041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.
    Liang X; Potter J; Kumar S; Ravinder N; Chesnut JD
    J Biotechnol; 2017 Jan; 241():136-146. PubMed ID: 27845164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene editing in mouse zygotes using the CRISPR/Cas9 system.
    Wefers B; Bashir S; Rossius J; Wurst W; Kühn R
    Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos.
    Gu B; Posfai E; Rossant J
    Nat Biotechnol; 2018 Aug; 36(7):632-637. PubMed ID: 29889212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
    Bloomer H; Smith RH; Hakami W; Larochelle A
    Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.