These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 32995073)
1. Evidence of transfer of miRNAs from the diet to the blood still inconclusive. Mar-Aguilar F; Arreola-Triana A; Mata-Cardona D; Gonzalez-Villasana V; Rodríguez-Padilla C; Reséndez-Pérez D PeerJ; 2020; 8():e9567. PubMed ID: 32995073 [TBL] [Abstract][Full Text] [Related]
2. Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation. Alshehri B Saudi J Biol Sci; 2021 Apr; 28(4):2408-2422. PubMed ID: 33911956 [TBL] [Abstract][Full Text] [Related]
3. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. Kang W; Bang-Berthelsen CH; Holm A; Houben AJ; Müller AH; Thymann T; Pociot F; Estivill X; Friedländer MR RNA; 2017 Apr; 23(4):433-445. PubMed ID: 28062594 [TBL] [Abstract][Full Text] [Related]
4. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. Díez-Sainz E; Lorente-Cebrián S; Aranaz P; Riezu-Boj JI; Martínez JA; Milagro FI Front Nutr; 2021; 8():586564. PubMed ID: 33768107 [TBL] [Abstract][Full Text] [Related]
5. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression. Díez-Sainz E; Milagro FI; Aranaz P; Riezu-Boj JI; Lorente-Cebrián S J Physiol Biochem; 2024 Aug; 80(3):655-670. PubMed ID: 38662188 [TBL] [Abstract][Full Text] [Related]
6. Detection of dietetically absorbed maize-derived microRNAs in pigs. Luo Y; Wang P; Wang X; Wang Y; Mu Z; Li Q; Fu Y; Xiao J; Li G; Ma Y; Gu Y; Jin L; Ma J; Tang Q; Jiang A; Li X; Li M Sci Rep; 2017 Apr; 7(1):645. PubMed ID: 28381865 [TBL] [Abstract][Full Text] [Related]
7. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. Witwer KW; McAlexander MA; Queen SE; Adams RJ RNA Biol; 2013 Jul; 10(7):1080-6. PubMed ID: 23770773 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the transability of dietary small non-coding RNAs to animals. Norouzi M; Bakhtiarizadeh MR; Salehi A Front Genet; 2022; 13():933709. PubMed ID: 36134021 [TBL] [Abstract][Full Text] [Related]
9. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. Baier SR; Nguyen C; Xie F; Wood JR; Zempleni J J Nutr; 2014 Oct; 144(10):1495-500. PubMed ID: 25122645 [TBL] [Abstract][Full Text] [Related]
10. Food-Derived Xeno-microRNAs: Influence of Diet and Detectability in Gastrointestinal Tract-Proof-of-Principle Study. Link J; Thon C; Schanze D; Steponaitiene R; Kupcinskas J; Zenker M; Canbay A; Malfertheiner P; Link A Mol Nutr Food Res; 2019 Jan; 63(2):e1800076. PubMed ID: 30378765 [TBL] [Abstract][Full Text] [Related]
11. Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake, and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Weil PP; Reincke S; Hirsch CA; Giachero F; Aydin M; Scholz J; Jönsson F; Hagedorn C; Nguyen DN; Thymann T; Pembaur A; Orth V; Wünsche V; Jiang PP; Wirth S; Jenke ACW; Sangild PT; Kreppel F; Postberg J Am J Clin Nutr; 2023 Jun; 117(6):1195-1210. PubMed ID: 36963568 [TBL] [Abstract][Full Text] [Related]
12. Invited review: MicroRNAs in bovine colostrum-Focus on their origin and potential health benefits for the calf. Van Hese I; Goossens K; Vandaele L; Opsomer G J Dairy Sci; 2020 Jan; 103(1):1-15. PubMed ID: 31677833 [TBL] [Abstract][Full Text] [Related]
13. Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. Chen X; Liu L; Chu Q; Sun S; Wu Y; Tong Z; Fang W; Timko MP; Fan L PLoS One; 2021; 16(9):e0257878. PubMed ID: 34587184 [TBL] [Abstract][Full Text] [Related]
14. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Jia M; He J; Bai W; Lin Q; Deng J; Li W; Bai J; Fu D; Ma Y; Ren J; Xiong S Food Funct; 2021 Oct; 12(20):9549-9562. PubMed ID: 34664582 [TBL] [Abstract][Full Text] [Related]
15. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation. Samad AFA; Kamaroddin MF; Sajad M Adv Nutr; 2021 Feb; 12(1):197-211. PubMed ID: 32862223 [TBL] [Abstract][Full Text] [Related]
16. Prediction of plant-derived xenomiRs from plant miRNA sequences using random forest and one-dimensional convolutional neural network models. Zhao Q; Mao Q; Zhao Z; Dou T; Wang Z; Cui X; Liu Y; Fan X BMC Genomics; 2018 Nov; 19(1):839. PubMed ID: 30477446 [TBL] [Abstract][Full Text] [Related]
17. Plant miRNA Cross-Kingdom Transfer Targeting Parasitic and Mutualistic Organisms as a Tool to Advance Modern Agriculture. Gualtieri C; Leonetti P; Macovei A Front Plant Sci; 2020; 11():930. PubMed ID: 32655608 [TBL] [Abstract][Full Text] [Related]
18. Diet-derived transmission of MicroRNAs from host plant into honey bee Midgut. Gharehdaghi L; Bakhtiarizadeh MR; He K; Harkinezhad T; Tahmasbi G; Li F BMC Genomics; 2021 Aug; 22(1):587. PubMed ID: 34344297 [TBL] [Abstract][Full Text] [Related]
19. Gene regulation by dietary microRNAs. Zempleni J; Baier SR; Howard KM; Cui J Can J Physiol Pharmacol; 2015 Dec; 93(12):1097-102. PubMed ID: 26222444 [TBL] [Abstract][Full Text] [Related]
20. Detection of Plant miRNAs Abundance in Human Breast Milk. Lukasik A; Brzozowska I; Zielenkiewicz U; Zielenkiewicz P Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29295476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]