These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32995362)

  • 21. Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy.
    Biswas A; Parthasarathy AB
    IEEE Access; 2022; 10():129754-129762. PubMed ID: 36644002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring neuronal activity with diffuse correlation spectroscopy: a theoretical investigation.
    Cheng X; Sie EJ; Naufel S; Boas DA; Marsili F
    Neurophotonics; 2021 Jul; 8(3):035004. PubMed ID: 34368390
    [No Abstract]   [Full Text] [Related]  

  • 23. High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera.
    Dragojević T; Bronzi D; Varma HM; Valdes CP; Castellvi C; Villa F; Tosi A; Justicia C; Zappa F; Durduran T
    Biomed Opt Express; 2015 Aug; 6(8):2865-76. PubMed ID: 26309751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissecting the microvascular contributions to diffuse correlation spectroscopy measurements of cerebral hemodynamics using optical coherence tomography angiography.
    Jang JH; Solarana K; Hammer DX; Fisher JAN
    Neurophotonics; 2021 Apr; 8(2):025006. PubMed ID: 33912621
    [No Abstract]   [Full Text] [Related]  

  • 25. Diffuse Correlation Spectroscopy Beyond the Water Peak Enabled by Cross-Correlation of the Signals From InGaAs/InP Single Photon Detectors.
    Robinson MB; Renna M; Ozana NN; Peruch A; Sakadzic S; Blackwell ML; Richardson JM; Aull BF; Carp SA; Franceschini MA
    IEEE Trans Biomed Eng; 2022 Jun; 69(6):1943-1953. PubMed ID: 34847015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measuring human cerebral blood flow and brain function with fiber-based speckle contrast optical spectroscopy system.
    Kim B; Zilpelwar S; Sie EJ; Marsili F; Zimmermann B; Boas DA; Cheng X
    Commun Biol; 2023 Aug; 6(1):844. PubMed ID: 37580382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles.
    Quaresima V; Farzam P; Anderson P; Farzam PY; Wiese D; Carp SA; Ferrari M; Franceschini MA
    J Appl Physiol (1985); 2019 Nov; 127(5):1328-1337. PubMed ID: 31513443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Red-Enhanced Photon Detection Module Featuring a 32 × 1 Single-Photon Avalanche Diode Array.
    Ceccarelli F; Gulinatti A; Labanca I; Ghioni M; Rech I
    IEEE Photonics Technol Lett; 2018 Mar; 30(6):557-560. PubMed ID: 29581700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of speckle noise in near-infrared spectroscopy measurements.
    Ortega-Martinez A; Zimmermann B; Cheng X; Li X; Yucel MA; Boas DA
    J Biomed Opt; 2019 Oct; 24(10):1-6. PubMed ID: 31668028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Portable System for Time-Domain Diffuse Correlation Spectroscopy.
    Tamborini D; Stephens KA; Wu MM; Farzam P; Siegel AM; Shatrovoy O; Blackwell M; Boas DA; Carp SA; Franceschini MA
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3014-3025. PubMed ID: 30794161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determinants of skeletal muscle oxygen consumption assessed by near-infrared diffuse correlation spectroscopy during incremental handgrip exercise.
    Rosenberry R; Tucker WJ; Haykowsky MJ; Trojacek D; Chamseddine HH; Arena-Marshall CA; Zhu Y; Wang J; Kellawan JM; Tian F; Nelson MD
    J Appl Physiol (1985); 2019 Sep; 127(3):698-706. PubMed ID: 31318612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance optimisation of a holographic Fourier domain diffuse correlation spectroscopy instrument.
    James E; Powell S; Munro P
    Biomed Opt Express; 2022 Jul; 13(7):3836-3853. PubMed ID: 35991914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep tissue flowmetry based on diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Lett; 2013 May; 38(9):1401-3. PubMed ID: 23632498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and simulation of a near-infrared enhanced Si-based SPAD for an automotive LiDAR.
    Xie S; Kong X; Cong J; Mao X; Fu Y
    Appl Opt; 2023 Oct; 62(28):7380-7386. PubMed ID: 37855506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-speckle diffuse correlation spectroscopy to measure cerebral blood flow.
    Murali K; Varma HM
    Biomed Opt Express; 2020 Nov; 11(11):6699-6709. PubMed ID: 33282518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Longitudinal, transcranial measurement of functional activation in the rat brain by diffuse correlation spectroscopy.
    Blanco I; Zirak P; Dragojević T; Castellvi C; Durduran T; Justicia C
    Neurophotonics; 2017 Oct; 4(4):045006. PubMed ID: 29226175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Choosing a camera and optimizing system parameters for speckle contrast optical spectroscopy.
    Cheng TY; Kim B; Zimmermann BB; Robinson MB; Renna M; Carp SA; Franceschini MA; Boas DA; Cheng X
    Sci Rep; 2024 May; 14(1):11915. PubMed ID: 38789499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model of dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics.
    Zilpelwar S; Sie EJ; Postnov D; Chen AI; Zimmermann B; Marsili F; Boas DA; Cheng X
    Biomed Opt Express; 2022 Dec; 13(12):6533-6549. PubMed ID: 36589566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow.
    Mazumder D; Wu MM; Ozana N; Tamborini D; Franceschini MA; Carp SA
    Neurophotonics; 2021 Jul; 8(3):035005. PubMed ID: 34395719
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.