These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32995362)

  • 41. Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors.
    Perenzoni M; Pancheri L; Stoppa D
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements.
    He L; Lin Y; Shang Y; Shelton BJ; Yu G
    J Biomed Opt; 2013 Mar; 18(3):037001. PubMed ID: 23455963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of source-detector separation on diffuse correlation spectroscopy measurements of cerebral blood flow with a multilayered analytical model.
    Zhao H; Buckley EM
    Neurophotonics; 2022 Jul; 9(3):035002. PubMed ID: 35874143
    [No Abstract]   [Full Text] [Related]  

  • 44. Smart-aggregation imaging for single molecule localisation with SPAD cameras.
    Gyongy I; Davies A; Dutton NA; Duncan RR; Rickman C; Henderson RK; Dalgarno PA
    Sci Rep; 2016 Nov; 6():37349. PubMed ID: 27876857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging.
    Shang Y; Li T; Yu G
    Physiol Meas; 2017 Apr; 38(4):R1-R26. PubMed ID: 28199219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-domain diffuse correlation spectroscopy.
    Sutin J; Zimmerman B; Tyulmankov D; Tamborini D; Wu KC; Selb J; Gulinatti A; Rech I; Tosi A; Boas DA; Franceschini MA
    Optica; 2016 Sep; 3(9):1006-1013. PubMed ID: 28008417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High performance planar germanium-on-silicon single-photon avalanche diode detectors.
    Vines P; Kuzmenko K; Kirdoda J; Dumas DCS; Mirza MM; Millar RW; Paul DJ; Buller GS
    Nat Commun; 2019 Mar; 10(1):1086. PubMed ID: 30842439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring.
    Yu G
    J Biomed Opt; 2012 Jan; 17(1):010901. PubMed ID: 22352633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of a Time-Resolved Diffuse Optical Spectroscopy Prototype Using Low-Cost, Compact Single Photon Avalanche Detectors for Tissue Optics Applications.
    Alayed M; Palubiak DP; Deen MJ
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.
    Rojalin T; Kurki L; Laaksonen T; Viitala T; Kostamovaara J; Gordon KC; Galvis L; Wachsmann-Hogiu S; Strachan CJ; Yliperttula M
    Anal Bioanal Chem; 2016 Jan; 408(3):761-74. PubMed ID: 26549117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults.
    He L; Baker WB; Milej D; Kavuri VC; Mesquita RC; Busch DR; Abramson K; Jiang JY; Diop M; St Lawrence K; Amendolia O; Quattrone F; Balu R; Kofke WA; Yodh AG
    Neurophotonics; 2018 Oct; 5(4):045006. PubMed ID: 30480039
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast blood flow monitoring in deep tissues with real-time software correlators.
    Wang D; Parthasarathy AB; Baker WB; Gannon K; Kavuri V; Ko T; Schenkel S; Li Z; Li Z; Mullen MT; Detre JA; Yodh AG
    Biomed Opt Express; 2016 Mar; 7(3):776-97. PubMed ID: 27231588
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diffuse Correlation Spectroscopy: A Review of Recent Advances in Parallelisation and Depth Discrimination Techniques.
    James E; Munro PRT
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Background Light Rejection in SPAD-Based LiDAR Sensors by Adaptive Photon Coincidence Detection.
    Beer M; Haase JF; Ruskowski J; Kokozinski R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544791
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fast diffuse correlation spectroscopy with a low-cost, fiber-less embedded diode laser.
    Biswas A; Moka S; Muller A; Parthasarathy AB
    Biomed Opt Express; 2021 Nov; 12(11):6686-6700. PubMed ID: 34858674
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fast single-photon avalanche diode arrays for laser Raman spectroscopy.
    Blacksberg J; Maruyama Y; Charbon E; Rossman GR
    Opt Lett; 2011 Sep; 36(18):3672-4. PubMed ID: 21931428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of continuous wave ultrasound for acousto-optic modulated diffuse correlation spectroscopy (AOM-DCS).
    Robinson MB; Carp SA; Peruch A; Boas DA; Franceschini MA; Sakadžić S
    Biomed Opt Express; 2020 Jun; 11(6):3071-3090. PubMed ID: 32637242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system.
    Tamborini D; Farzam P; Zimmermann B; Wu KC; Boas DA; Franceschini MA
    Neurophotonics; 2018 Jan; 5(1):011015. PubMed ID: 28948194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Custom single-photon avalanche diode with integrated front-end for parallel photon timing applications.
    Cammi C; Panzeri F; Gulinatti A; Rech I; Ghioni M
    Rev Sci Instrum; 2012 Mar; 83(3):033104. PubMed ID: 22462903
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.