These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 32995499)

  • 1. Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization.
    Davies HML; Liao K
    Nat Rev Chem; 2019 Jun; 3(6):347-360. PubMed ID: 32995499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-selective and stereoselective functionalization of unactivated C-H bonds.
    Liao K; Negretti S; Musaev DG; Bacsa J; Davies HM
    Nature; 2016 May; 533(7602):230-4. PubMed ID: 27172046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
    Liao K; Pickel TC; Boyarskikh V; Bacsa J; Musaev DG; Davies HML
    Nature; 2017 Nov; 551(7682):609-613. PubMed ID: 29156454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds.
    Liao K; Yang YF; Li Y; Sanders JN; Houk KN; Musaev DG; Davies HML
    Nat Chem; 2018 Oct; 10(10):1048-1055. PubMed ID: 30082883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.
    Engle KM; Mei TS; Wasa M; Yu JQ
    Acc Chem Res; 2012 Jun; 45(6):788-802. PubMed ID: 22166158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sterically demanding chiral dirhodium catalysts in site-selective C-H functionalization of activated primary C-H bonds.
    Qin C; Davies HM
    J Am Chem Soc; 2014 Jul; 136(27):9792-6. PubMed ID: 24933043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes.
    Davies HM; Morton D
    Chem Soc Rev; 2011 Apr; 40(4):1857-69. PubMed ID: 21359404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 1,2-Diarylcyclopropanecarboxylates with 1,2,2-Triarylcyclopropanecarboxylates as Chiral Ligands for Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.
    Wertz B; Ren Z; Bacsa J; Musaev DG; Davies HML
    J Org Chem; 2020 Oct; 85(19):12199-12211. PubMed ID: 32803966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.
    Mousseau JJ; Charette AB
    Acc Chem Res; 2013 Feb; 46(2):412-24. PubMed ID: 23098328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.
    Archambeau A; Miege F; Meyer C; Cossy J
    Acc Chem Res; 2015 Apr; 48(4):1021-31. PubMed ID: 25763601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidentate, monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds.
    Daugulis O; Roane J; Tran LD
    Acc Chem Res; 2015 Apr; 48(4):1053-64. PubMed ID: 25756616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C-H Functionalization Reactions.
    Cammarota RC; Liu W; Bacsa J; Davies HML; Sigman MS
    J Am Chem Soc; 2022 Feb; 144(4):1881-1898. PubMed ID: 35073072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D
    Chen Z; Shimabukuro K; Bacsa J; Musaev DG; Davies HML
    J Am Chem Soc; 2024 Jul; 146(28):19460-19473. PubMed ID: 38959398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon-Tethered Strategies for C-H Functionalization Reactions.
    Parasram M; Gevorgyan V
    Acc Chem Res; 2017 Aug; 50(8):2038-2053. PubMed ID: 28771325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp(3) C-H Functionalization.
    He G; Wang B; Nack WA; Chen G
    Acc Chem Res; 2016 Apr; 49(4):635-45. PubMed ID: 27015079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalyst-Controlled Selective Functionalization of Unactivated C-H Bonds in the Presence of Electronically Activated C-H Bonds.
    Liu W; Ren Z; Bosse AT; Liao K; Goldstein EL; Bacsa J; Musaev DG; Stoltz BM; Davies HML
    J Am Chem Soc; 2018 Sep; 140(38):12247-12255. PubMed ID: 30222321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chain-walking reactions of transition metals for remote C-H bond functionalization of olefinic substrates.
    Ghosh S; Patel S; Chatterjee I
    Chem Commun (Camb); 2021 Oct; 57(85):11110-11130. PubMed ID: 34611681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization.
    Zhao C; Crimmin MR; Toste FD; Bergman RG
    Acc Chem Res; 2014 Feb; 47(2):517-29. PubMed ID: 24359109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.