These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32995503)

  • 1. Chemical reaction networks for computing logarithm.
    Chou CT
    Synth Biol (Oxf); 2017 Jan; 2(1):ysx002. PubMed ID: 32995503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Reaction Networks for Computing Polynomials.
    Salehi SA; Parhi KK; Riedel MD
    ACS Synth Biol; 2017 Jan; 6(1):76-83. PubMed ID: 27598466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composable Rate-Independent Computation in Continuous Chemical Reaction Networks.
    Chalk C; Kornerup N; Reeves W; Soloveichik D
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):250-260. PubMed ID: 31722486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic Function Computation with Chemical Reaction Networks.
    Chen HL; Doty D; Soloveichik D
    Nat Comput; 2012; 7433():25-42. PubMed ID: 25383068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern Generation with Nucleic Acid Chemical Reaction Networks.
    Wang SS; Ellington AD
    Chem Rev; 2019 May; 119(10):6370-6383. PubMed ID: 30865429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing and tuning stochastic chemical reaction networks with specified behaviours.
    Murphy N; Petersen R; Phillips A; Yordanov B; Dalchau N
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30111661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming and training rate-independent chemical reaction networks.
    Vasić M; Chalk C; Luchsinger A; Khurshid S; Soloveichik D
    Proc Natl Acad Sci U S A; 2022 Jun; 119(24):e2111552119. PubMed ID: 35679345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programming and simulating chemical reaction networks on a surface.
    Clamons S; Qian L; Winfree E
    J R Soc Interface; 2020 May; 17(166):20190790. PubMed ID: 32453979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex chemical reaction networks for future information processing.
    Csizi KS; Lörtscher E
    Front Neurosci; 2024; 18():1379205. PubMed ID: 38545604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Reaction Networks' Programming for Solving Equations.
    Shang Z; Zhou C; Zhang Q
    Curr Issues Mol Biol; 2022 Apr; 44(4):1725-1739. PubMed ID: 35723377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of Growth in Open Chemical Reaction Networks.
    Marehalli Srinivas SG; Avanzini F; Esposito M
    Phys Rev Lett; 2024 Jun; 132(26):268001. PubMed ID: 38996287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches.
    Lai W; Xiong X; Wang F; Li Q; Li L; Fan C; Pei H
    ACS Synth Biol; 2019 Sep; 8(9):2106-2112. PubMed ID: 31461263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic analysis of Chemical Reaction Networks using Linear Noise Approximation.
    Cardelli L; Kwiatkowska M; Laurenti L
    Biosystems; 2016 Nov; 149():26-33. PubMed ID: 27816736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNAr: An R Package to Simulate and Analyze CRN and DSD Networks.
    Vieira DKS; Guterres MV; Marks RA; Oliveira PAC; Fonte Boa MCO; Vilela Neto OP
    ACS Synth Biol; 2020 Dec; 9(12):3416-3421. PubMed ID: 33283498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programming discrete distributions with chemical reaction networks.
    Cardelli L; Kwiatkowska M; Laurenti L
    Nat Comput; 2018; 17(1):131-145. PubMed ID: 29576758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach.
    van Roekel HW; Rosier BJ; Meijer LH; Hilbers PA; Markvoort AJ; Huck WT; de Greef TF
    Chem Soc Rev; 2015 Nov; 44(21):7465-83. PubMed ID: 26214155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flows, scaling, and the control of moment hierarchies for stochastic chemical reaction networks.
    Smith E; Krishnamurthy S
    Phys Rev E; 2017 Dec; 96(6):. PubMed ID: 29335680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information processing using an integrated DNA reaction network.
    Huang D; Han H; Guo C; Lin X; Chen D; Yang S; Yang Q; Li F
    Nanoscale; 2021 Mar; 13(11):5706-5713. PubMed ID: 33683263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Strand Displacing Polymerase To Program Chemical Reaction Networks.
    Shah S; Wee J; Song T; Ceze L; Strauss K; Chen YJ; Reif J
    J Am Chem Soc; 2020 May; 142(21):9587-9593. PubMed ID: 32364723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.