These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32995514)

  • 1. Elucidating the potential of crude cell extracts for producing pyruvate from glucose.
    Garcia DC; Mohr BP; Dovgan JT; Hurst GB; Standaert RF; Doktycz MJ
    Synth Biol (Oxf); 2018; 3(1):ysy006. PubMed ID: 32995514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lysate proteome engineering strategy for enhancing cell-free metabolite production.
    Garcia DC; Dinglasan JLN; Shrestha H; Abraham PE; Hettich RL; Doktycz MJ
    Metab Eng Commun; 2021 Jun; 12():e00162. PubMed ID: 33552897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude
    Mohr B; Giannone RJ; Hettich RL; Doktycz MJ
    ACS Synth Biol; 2020 Nov; 9(11):2986-2997. PubMed ID: 33044063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering.
    Jules M
    Microb Cell; 2017 Dec; 5(1):56-59. PubMed ID: 29354650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.
    Kay JE; Jewett MC
    Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo metabolic engineering and the promise of synthetic DNA.
    Klein-Marcuschamer D; Yadav VG; Ghaderi A; Stephanopoulos GN
    Adv Biochem Eng Biotechnol; 2010; 120():101-31. PubMed ID: 20186529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally Guided Discovery and Experimental Validation of Indole-3-acetic Acid Synthesis Pathways.
    Garcia DC; Cheng X; Land ML; Standaert RF; Morrell-Falvey JL; Doktycz MJ
    ACS Chem Biol; 2019 Dec; 14(12):2867-2875. PubMed ID: 31693336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis.
    Dudley QM; Anderson KC; Jewett MC
    ACS Synth Biol; 2016 Dec; 5(12):1578-1588. PubMed ID: 27476989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses.
    Lee J; Jang YS; Han MJ; Kim JY; Lee SY
    mBio; 2016 Jun; 7(3):. PubMed ID: 27302759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic assessment of E. coli as a Biofactory for commercial products.
    Zhang X; Tervo CJ; Reed JL
    Metab Eng; 2016 May; 35():64-74. PubMed ID: 26850742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of
    Saini M; Wang ZW; Chiang CJ; Chao YP
    Biotechnol Biofuels; 2017; 10():173. PubMed ID: 28680480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.
    Cho C; Choi SY; Luo ZW; Lee SY
    Biotechnol Adv; 2015 Nov; 33(7):1455-66. PubMed ID: 25450194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering metabolic pathways in Escherichia coli for constructing a "microbial chassis" for biochemical production.
    Matsumoto T; Tanaka T; Kondo A
    Bioresour Technol; 2017 Dec; 245(Pt B):1362-1368. PubMed ID: 28522199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic adaptation of MDCK cells to different growth conditions: effects on catalytic activities of central metabolic enzymes.
    Janke R; Genzel Y; Händel N; Wahl A; Reichl U
    Biotechnol Bioeng; 2011 Nov; 108(11):2691-704. PubMed ID: 21618469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol.
    Nguyen AD; Kim D; Lee EY
    BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanding biological applications using cell-free metabolic engineering: An overview.
    Swartz JR
    Metab Eng; 2018 Nov; 50():156-172. PubMed ID: 30367967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.