These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32995675)

  • 1. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity.
    Shuai C; Yang W; Feng P; Peng S; Pan H
    Bioact Mater; 2021 Feb; 6(2):490-502. PubMed ID: 32995675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a stereocomplex between poly(D-lactide) grafted hydroxyapatite and poly(L-lactide): toward a bioactive composite scaffold with enhanced interfacial bonding.
    Shuai C; Yu L; Feng P; Peng S; Pan H; Bai X
    J Mater Chem B; 2022 Jan; 10(2):214-223. PubMed ID: 34927656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Generation of Hydroxyapatite on Biopolymer Particles for Fabrication of Bone Scaffolds Owning Bioactivity.
    Feng P; Peng S; Shuai C; Gao C; Yang W; Bin S; Min A
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46743-46755. PubMed ID: 32940994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold.
    Shuai C; Peng B; Feng P; Yu L; Lai R; Min A
    J Adv Res; 2022 Jan; 35():13-24. PubMed ID: 35024192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonic Acid Coupling Agent Modification of HAP Nanoparticles: Interfacial Effects in PLLA/HAP Bone Scaffold.
    Shuai C; Yu L; Yang W; Peng S; Zhong Y; Feng P
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31940986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair.
    Ge M; Ge K; Gao F; Yan W; Liu H; Xue L; Jin Y; Ma H; Zhang J
    Int J Nanomedicine; 2018; 13():1707-1721. PubMed ID: 29599615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds.
    Ma PX; Zhang R; Xiao G; Franceschi R
    J Biomed Mater Res; 2001 Feb; 54(2):284-93. PubMed ID: 11093189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bone regeneration composite scaffolds of PLLA/β-TCP matrix grafted with gelatin and HAp.
    Wang JL; Chen Q; Du BB; Cao L; Lin H; Fan ZY; Dong J
    Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():60-69. PubMed ID: 29549950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone Regeneration Capacity of Newly Developed Uncalcined/Unsintered Hydroxyapatite and Poly-l-lactide-co-glycolide Sheet in Maxillofacial Surgery: An In Vivo Study.
    Ngo HX; Dong QN; Bai Y; Sha J; Ishizuka S; Okui T; Sukegawa S; Kanno T
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Hard and Soft Tissue Responses to Four Different Generation Bioresorbable Materials-Poly-l-Lactic Acid (PLLA), Poly-l-Lactic Acid/Polyglycolic Acid (PLLA/PGA), Uncalcined/Unsintered Hydroxyapatite/Poly-l-Lactic Acid (u-HA/PLLA) and Uncalcined/Unsintered Hydroxyapatite/Poly-l-Lactic Acid/Polyglycolic Acid (u-HA/PLLA/PGA) in Maxillofacial Surgery: An In-Vivo Animal Study.
    Ayasaka K; Ramanathan M; Huy NX; Shijirbold A; Okui T; Tatsumi H; Kotani T; Shimamura Y; Morioka R; Kanno T
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid mineralization of hierarchical poly(l-lactic acid)/poly(ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration.
    Nie W; Gao Y; McCoul DJ; Gillispie GJ; Zhang Y; Liang L; He C
    Int J Nanomedicine; 2019; 14():3929-3941. PubMed ID: 31213809
    [No Abstract]   [Full Text] [Related]  

  • 13. Graphene Oxide Induces Ester Bonds Hydrolysis of Poly-l-lactic Acid Scaffold to Accelerate Degradation.
    Shuai C; Li Y; Yang W; Yu L; Yang Y; Peng S; Feng P
    Int J Bioprint; 2020; 6(1):249. PubMed ID: 32782986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy.
    Slivka MA; Chu CC
    J Biomed Mater Res; 1997 Dec; 37(3):353-62. PubMed ID: 9368140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds.
    Woo KM; Seo J; Zhang R; Ma PX
    Biomaterials; 2007 Jun; 28(16):2622-30. PubMed ID: 17320948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-enhance bioactive of polymer scaffold with mesoporous silica and nano-hydroxyapatite.
    Shuai C; Xu Y; Feng P; Xu L; Peng S; Deng Y
    J Biomater Sci Polym Ed; 2019 Aug; 30(12):1097-1113. PubMed ID: 31156060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast bone-like apatite formation on highly porous poly(l-lactic acid)-hydroxyapatite fibres.
    Zhu J; Tang D; Lu Z; Xin Z; Song J; Meng J; Lu JR; Li Z; Li J
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111168. PubMed ID: 32806301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.