These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 32995749)
1. Why TDP-43? Why Not? Mechanisms of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis. Floare ML; Allen SP Neurosci Insights; 2020; 15():2633105520957302. PubMed ID: 32995749 [TBL] [Abstract][Full Text] [Related]
2. Amyotrophic Lateral Sclerosis Genes in Layalle S; They L; Ourghani S; Raoul C; Soustelle L Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477509 [TBL] [Abstract][Full Text] [Related]
3. The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Kalmar B; Lu CH; Greensmith L Pharmacol Ther; 2014 Jan; 141(1):40-54. PubMed ID: 23978556 [TBL] [Abstract][Full Text] [Related]
4. DNA Damage, Defective DNA Repair, and Neurodegeneration in Amyotrophic Lateral Sclerosis. Konopka A; Atkin JD Front Aging Neurosci; 2022; 14():786420. PubMed ID: 35572138 [TBL] [Abstract][Full Text] [Related]
5. Pathological Modification of TDP-43 in Amyotrophic Lateral Sclerosis with SOD1 Mutations. Jeon GS; Shim YM; Lee DY; Kim JS; Kang M; Ahn SH; Shin JY; Geum D; Hong YH; Sung JJ Mol Neurobiol; 2019 Mar; 56(3):2007-2021. PubMed ID: 29982983 [TBL] [Abstract][Full Text] [Related]
6. TDP-43/FUS in motor neuron disease: Complexity and challenges. Guerrero EN; Wang H; Mitra J; Hegde PM; Stowell SE; Liachko NF; Kraemer BC; Garruto RM; Rao KS; Hegde ML Prog Neurobiol; 2016; 145-146():78-97. PubMed ID: 27693252 [TBL] [Abstract][Full Text] [Related]
7. Monocytes of patients with amyotrophic lateral sclerosis linked to gene mutations display altered TDP-43 subcellular distribution. De Marco G; Lomartire A; Calvo A; Risso A; De Luca E; Mostert M; Mandrioli J; Caponnetto C; Borghero G; Manera U; Canosa A; Moglia C; Restagno G; Fini N; Tarella C; Giordana MT; Rinaudo MT; Chiò A Neuropathol Appl Neurobiol; 2017 Feb; 43(2):133-153. PubMed ID: 27178390 [TBL] [Abstract][Full Text] [Related]
8. The prion-like nature of amyotrophic lateral sclerosis. McAlary L; Yerbury JJ; Cashman NR Prog Mol Biol Transl Sci; 2020; 175():261-296. PubMed ID: 32958236 [TBL] [Abstract][Full Text] [Related]
9. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Bowerman M; Murray LM; Scamps F; Schneider BL; Kothary R; Raoul C Eur J Med Genet; 2018 Nov; 61(11):685-698. PubMed ID: 29313812 [TBL] [Abstract][Full Text] [Related]
10. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Mackenzie IR; Bigio EH; Ince PG; Geser F; Neumann M; Cairns NJ; Kwong LK; Forman MS; Ravits J; Stewart H; Eisen A; McClusky L; Kretzschmar HA; Monoranu CM; Highley JR; Kirby J; Siddique T; Shaw PJ; Lee VM; Trojanowski JQ Ann Neurol; 2007 May; 61(5):427-34. PubMed ID: 17469116 [TBL] [Abstract][Full Text] [Related]
11. Using yeast models to probe the molecular basis of amyotrophic lateral sclerosis. Bastow EL; Gourlay CW; Tuite MF Biochem Soc Trans; 2011 Oct; 39(5):1482-7. PubMed ID: 21936838 [TBL] [Abstract][Full Text] [Related]
12. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy. Pham J; Keon M; Brennan S; Saksena N Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32422969 [TBL] [Abstract][Full Text] [Related]
13. Rab1-dependent ER-Golgi transport dysfunction is a common pathogenic mechanism in SOD1, TDP-43 and FUS-associated ALS. Soo KY; Halloran M; Sundaramoorthy V; Parakh S; Toth RP; Southam KA; McLean CA; Lock P; King A; Farg MA; Atkin JD Acta Neuropathol; 2015 Nov; 130(5):679-97. PubMed ID: 26298469 [TBL] [Abstract][Full Text] [Related]
15. TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Maekawa S; Leigh PN; King A; Jones E; Steele JC; Bodi I; Shaw CE; Hortobagyi T; Al-Sarraj S Neuropathology; 2009 Dec; 29(6):672-83. PubMed ID: 19496940 [TBL] [Abstract][Full Text] [Related]
16. Misfolding at the synapse: A role in amyotrophic lateral sclerosis pathogenesis? Lum JS; Yerbury JJ Front Mol Neurosci; 2022; 15():997661. PubMed ID: 36157072 [TBL] [Abstract][Full Text] [Related]
17. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia. Jovičić A; Paul JW; Gitler AD J Neurochem; 2016 Aug; 138 Suppl 1():134-44. PubMed ID: 27087014 [TBL] [Abstract][Full Text] [Related]
18. "STRESSED OUT": The role of FUS and TDP-43 in amyotrophic lateral sclerosis. Aksoy YA; Deng W; Stoddart J; Chung R; Guillemin G; Cole NJ; Neely GG; Hesselson D Int J Biochem Cell Biol; 2020 Sep; 126():105821. PubMed ID: 32758633 [TBL] [Abstract][Full Text] [Related]
19. How do the RNA-binding proteins TDP-43 and FUS relate to amyotrophic lateral sclerosis and frontotemporal degeneration, and to each other? Baloh RH Curr Opin Neurol; 2012 Dec; 25(6):701-7. PubMed ID: 23041957 [TBL] [Abstract][Full Text] [Related]
20. Shared Molecular Mechanisms in Alzheimer's Disease and Amyotrophic Lateral Sclerosis: Neurofilament-Dependent Transport of sAPP, FUS, TDP-43 and SOD1, with Endoplasmic Reticulum-Like Tubules. Muresan V; Ladescu Muresan Z Neurodegener Dis; 2016; 16(1-2):55-61. PubMed ID: 26605911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]