These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32995803)

  • 1. KIM-1/TIM-1 is a Receptor for SARS-CoV-2 in Lung and Kidney.
    Mori Y; Fink C; Ichimura T; Sako K; Mori M; Lee NN; Aschauer P; Padmanabha Das KM; Hong S; Song M; Padera RF; Weins A; Lee LP; Nasr ML; Dekaban GA; Dikeakos JD; Bonventre JV
    medRxiv; 2022 Jan; ():. PubMed ID: 32995803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147.
    Habeichi NJ; Amin G; Lakkis B; Kataya R; Mericskay M; Booz GW; Zouein FA
    Front Biosci (Landmark Ed); 2024 Jan; 29(1):8. PubMed ID: 38287815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SARS-CoV-2 pseudovirus infectivity and expression of viral entry-related factors ACE2, TMPRSS2, Kim-1, and NRP-1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems.
    Zhang F; Li W; Feng J; Ramos da Silva S; Ju E; Zhang H; Chang Y; Moore PS; Guo H; Gao SJ
    J Med Virol; 2021 Dec; 93(12):6671-6685. PubMed ID: 34324210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The OM-85 bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression.
    Pivniouk V; Pivniouk O; DeVries A; Uhrlaub JL; Michael A; Pivniouk D; VanLinden SR; Conway MY; Hahn S; Malone SP; Ezeh P; Churko JM; Anderson D; Kraft M; Nikolich-Zugich J; Vercelli D
    J Allergy Clin Immunol; 2022 Mar; 149(3):923-933.e6. PubMed ID: 34902435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis.
    Hejenkowska ED; Mitash N; Donovan JE; Chandra A; Bertrand C; De Santi C; Greene CM; Mu F; Swiatecka-Urban A
    J Innate Immun; 2023; 15(1):629-646. PubMed ID: 37579743
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Li LH; Chiu HW; Wong WT; Huang KC; Lin TW; Chen ST; Hua KF
    J Inflamm Res; 2023; 16():4867-4884. PubMed ID: 37908202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy.
    Datta PK; Liu F; Fischer T; Rappaport J; Qin X
    Theranostics; 2020; 10(16):7448-7464. PubMed ID: 32642005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in Cell Surface ACE2 Levels Alter Direct Binding of SARS-CoV-2 Spike Protein and Viral Infectivity: Implications for Measuring Spike Protein Interactions with Animal ACE2 Orthologs.
    Kazemi S; López-Muñoz AD; Hollý J; Jin L; Yewdell JW; Dolan BP
    J Virol; 2022 Sep; 96(17):e0025622. PubMed ID: 36000847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant ACE2 protein protects against acute lung injury induced by SARS-CoV-2 spike RBD protein.
    Zhang L; Zhang Y; Qin X; Jiang X; Zhang J; Mao L; Jiang Z; Jiang Y; Liu G; Qiu J; Chen C; Qiu F; Zou Z
    Crit Care; 2022 Jun; 26(1):171. PubMed ID: 35681221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart.
    Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z
    Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Angiotensin-Converting-Enzyme Inhibitor and Angiotensin II Receptor Antagonist Treatment on ACE2 Expression and SARS-CoV-2 Replication in Primary Airway Epithelial Cells.
    Okoloko O; Vanderwall ER; Rich LM; White MP; Reeves SR; Harrington WE; Barrow KA; Debley JS
    Front Pharmacol; 2021; 12():765951. PubMed ID: 34867390
    [No Abstract]   [Full Text] [Related]  

  • 12. SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis.
    Panigrahi S; Goswami T; Ferrari B; Antonelli CJ; Bazdar DA; Gilmore H; Freeman ML; Lederman MM; Sieg SF
    Microbiol Spectr; 2021 Dec; 9(3):e0073521. PubMed ID: 34935423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell.
    Puray-Chavez M; LaPak KM; Schrank TP; Elliott JL; Bhatt DP; Agajanian MJ; Jasuja R; Lawson DQ; Davis K; Rothlauf PW; Liu Z; Jo H; Lee N; Tenneti K; Eschbach JE; Shema Mugisha C; Cousins EM; Cloer EW; Vuong HR; VanBlargan LA; Bailey AL; Gilchuk P; Crowe JE; Diamond MS; Hayes DN; Whelan SPJ; Horani A; Brody SL; Goldfarb D; Major MB; Kutluay SB
    Cell Rep; 2021 Jul; 36(2):109364. PubMed ID: 34214467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19.
    Kuba K; Yamaguchi T; Penninger JM
    Front Immunol; 2021; 12():732690. PubMed ID: 35003058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive SARS-CoV-2 Serology Reveals Most Antibodies Targeting the Spike Receptor-Binding Domain Compete for ACE2 Binding.
    Byrnes JR; Zhou XX; Lui I; Elledge SK; Glasgow JE; Lim SA; Loudermilk RP; Chiu CY; Wang TT; Wilson MR; Leung KK; Wells JA
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphatidylserine receptors enhance SARS-CoV-2 infection.
    Bohan D; Van Ert H; Ruggio N; Rogers KJ; Badreddine M; Aguilar Briseño JA; Elliff JM; Rojas Chavez RA; Gao B; Stokowy T; Christakou E; Kursula P; Micklem D; Gausdal G; Haim H; Minna J; Lorens JB; Maury W
    PLoS Pathog; 2021 Nov; 17(11):e1009743. PubMed ID: 34797899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin-converting enzyme 2, coronavirus disease 2019, and abdominal aortic aneurysms.
    Xu B; Li G; Guo J; Ikezoe T; Kasirajan K; Zhao S; Dalman RL
    J Vasc Surg; 2021 Nov; 74(5):1740-1751. PubMed ID: 33600934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SARS-CoV-2 Induces Expression of Cytokine and MUC5AC/5B in Human Nasal Epithelial Cell through ACE 2 Receptor.
    Lee S; Na HG; Choi YS; Bae CH; Song SY; Kim YD
    Biomed Res Int; 2022; 2022():2743046. PubMed ID: 35692597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SARS-CoV-2 receptor networks in diabetic and COVID-19-associated kidney disease.
    Menon R; Otto EA; Sealfon R; Nair V; Wong AK; Theesfeld CL; Chen X; Wang Y; Boppana AS; Luo J; Yang Y; Kasson PM; Schaub JA; Berthier CC; Eddy S; Lienczewski CC; Godfrey B; Dagenais SL; Sohaney R; Hartman J; Fermin D; Subramanian L; Looker HC; Harder JL; Mariani LH; Hodgin JB; Sexton JZ; Wobus CE; Naik AS; Nelson RG; Troyanskaya OG; Kretzler M
    Kidney Int; 2020 Dec; 98(6):1502-1518. PubMed ID: 33038424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of SARS-CoV-2 on Cardiovascular System: The Dual Role of Angiotensin-Converting Enzyme 2 (ACE2) as the Virus Receptor and Homeostasis Regulator-Review.
    Aleksova A; Gagno G; Sinagra G; Beltrami AP; Janjusevic M; Ippolito G; Zumla A; Fluca AL; Ferro F
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.