These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 32996180)

  • 61. An insight into the mechanisms of homeostasis in extremophiles.
    Somayaji A; Dhanjal CR; Lingamsetty R; Vinayagam R; Selvaraj R; Varadavenkatesan T; Govarthanan M
    Microbiol Res; 2022 Oct; 263():127115. PubMed ID: 35868258
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [L-asparaginases of extremophilic microorganisms in biomedicine].
    Dumina MV; Eldarov MA; Zdanov DD; Sokolov NN
    Biomed Khim; 2020 Feb; 66(2):105-123. PubMed ID: 32420891
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent advances in the production, properties and applications of haloextremozymes protease and lipase from haloarchaea.
    Gaonkar SK; Alvares JJ; Furtado IJ
    World J Microbiol Biotechnol; 2023 Sep; 39(11):322. PubMed ID: 37755613
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heterotrophic Growth Dominates in the Most Extremotolerant Extremophile Cultures.
    Matthews A; Lima-Zaloumis J; Debes Ii RV; Boyer G; Trembath-Reichert E
    Astrobiology; 2023 Apr; 23(4):446-459. PubMed ID: 36723486
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fungi are key players in extreme ecosystems.
    Coleine C; Stajich JE; Selbmann L
    Trends Ecol Evol; 2022 Jun; 37(6):517-528. PubMed ID: 35246323
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigating Bio-Inspired Degradation of Toxic Dyes Using Potential Multi-Enzyme Producing Extremophiles.
    Pham VHT; Kim J; Chang S; Bang D
    Microorganisms; 2023 May; 11(5):. PubMed ID: 37317247
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Extremozymes: expanding the limits of biocatalysis.
    Adams MW; Perler FB; Kelly RM
    Biotechnology (N Y); 1995 Jul; 13(7):662-8. PubMed ID: 9634802
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Technological Prospecting: Mapping Patents on L-asparaginases from Extremophilic Microorganisms.
    de Oliveira Lima IG; Bispo JRS; da Silva MB; de Oliveira Feitosa A; Dos Santos ACM; Moreira MSA; Passarini MRZ; Saraiva Câmara PEA; Rosa LH; Oliveira VM; de Queiroz AC; Duarte AWF
    Recent Pat Biotechnol; 2021; 15(4):250-265. PubMed ID: 34353277
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The production of biocatalysts and biomolecules from extremophiles.
    Schiraldi C; De Rosa M
    Trends Biotechnol; 2002 Dec; 20(12):515-21. PubMed ID: 12443873
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thermophiles and the applications of their enzymes as new biocatalysts.
    Atalah J; Cáceres-Moreno P; Espina G; Blamey JM
    Bioresour Technol; 2019 May; 280():478-488. PubMed ID: 30826176
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Marine Fungal and Bacterial Isolates for Lipase Production: A Comparative Study.
    Patnala HS; Kabilan U; Gopalakrishnan L; Rao RM; Kumar DS
    Adv Food Nutr Res; 2016; 78():71-94. PubMed ID: 27452166
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications.
    Segal-Kischinevzky C; Romero-Aguilar L; Alcaraz LD; López-Ortiz G; Martínez-Castillo B; Torres-Ramírez N; Sandoval G; González J
    Microorganisms; 2022 Apr; 10(4):. PubMed ID: 35456844
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Extremozymes: A Potential Source for Industrial Applications.
    Dumorné K; Córdova DC; Astorga-Eló M; Renganathan P
    J Microbiol Biotechnol; 2017 Apr; 27(4):649-659. PubMed ID: 28104900
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lessons from Extremophiles: Functional Adaptations and Genomic Innovations across the Eukaryotic Tree of Life.
    Rappaport HB; Oliverio AM
    Genome Biol Evol; 2024 Aug; 16(8):. PubMed ID: 39101574
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fibrinolytic Enzymes From Extremophilic Microorganisms in the Development of New Thrombolytic Therapies: Technological Prospecting.
    Soares Bispo JR; de Oliveira Lima IG; da Silva MB; de Oliveira Feitosa A; Dos Santos ACM; Alexandre Moreira MS; Zambrano Passarini MR; Saraiva Câmara PEA; Rosa LH; Oliveira VM; de Queiroz AC; Fernandes Duarte AW
    Recent Pat Biotechnol; 2021; 15(3):169-183. PubMed ID: 34353276
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Extremophiles for microbial-electrochemistry applications: A critical review.
    Shrestha N; Chilkoor G; Vemuri B; Rathinam N; Sani RK; Gadhamshetty V
    Bioresour Technol; 2018 May; 255():318-330. PubMed ID: 29433771
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Molecular biology of extremophiles: recent progress on the hyperthermophilic archaeon Sulfolobus.
    Ciaramella M; Pisani FM; Rossi M
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):85-97. PubMed ID: 12448708
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Extremophiles and their application to veterinary medicine.
    Irwin JA
    Environ Technol; 2010; 31(8-9):857-69. PubMed ID: 20662377
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A review of extracellular polysaccharides from extreme niches: An emerging natural source for the biotechnology. From the adverse to diverse!
    López-Ortega MA; Chavarría-Hernández N; López-Cuellar MDR; Rodríguez-Hernández AI
    Int J Biol Macromol; 2021 Apr; 177():559-577. PubMed ID: 33609577
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27.
    Fuciños P; González R; Atanes E; Sestelo AB; Pérez-Guerra N; Pastrana L; Rúa ML
    Methods Mol Biol; 2012; 861():239-66. PubMed ID: 22426723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.