BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32996531)

  • 1. Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy.
    Cavani N; De Corato M; Ruini A; Prezzi D; Molinari E; Lodi Rizzini A; Rosi A; Biagi R; Corradini V; Wang XY; Feng X; Narita A; Müllen K; De Renzi V
    Nanoscale; 2020 Oct; 12(38):19681-19688. PubMed ID: 32996531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal-Organic Framework.
    Kitao T; MacLean MWA; Nakata K; Takayanagi M; Nagaoka M; Uemura T
    J Am Chem Soc; 2020 Mar; 142(12):5509-5514. PubMed ID: 32148033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman Fingerprints of Atomically Precise Graphene Nanoribbons.
    Verzhbitskiy IA; Corato MD; Ruini A; Molinari E; Narita A; Hu Y; Schwab MG; Bruna M; Yoon D; Milana S; Feng X; Müllen K; Ferrari AC; Casiraghi C; Prezzi D
    Nano Lett; 2016 Jun; 16(6):3442-7. PubMed ID: 26907096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical On-Surface Synthesis of Graphene Nanoribbon Heterojunctions.
    Bronner C; Durr RA; Rizzo DJ; Lee YL; Marangoni T; Kalayjian AM; Rodriguez H; Zhao W; Louie SG; Fischer FR; Crommie MF
    ACS Nano; 2018 Mar; 12(3):2193-2200. PubMed ID: 29381853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties.
    Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H
    Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility.
    Niu W; Ma J; Soltani P; Zheng W; Liu F; Popov AA; Weigand JJ; Komber H; Poliani E; Casiraghi C; Droste J; Hansen MR; Osella S; Beljonne D; Bonn M; Wang HI; Feng X; Liu J; Mai Y
    J Am Chem Soc; 2020 Oct; 142(43):18293-18298. PubMed ID: 33078947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices.
    Wang Q; Kitaura R; Suzuki S; Miyauchi Y; Matsuda K; Yamamoto Y; Arai S; Shinohara H
    ACS Nano; 2016 Jan; 10(1):1475-80. PubMed ID: 26731015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio characterization of graphene nanoribbons and their polymer precursors.
    Peköz R; Feng X; Donadio D
    J Phys Condens Matter; 2012 Mar; 24(10):104023. PubMed ID: 22353922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots.
    Jacobse PH; Sarker M; Saxena A; Zahl P; Wang Z; Berger E; Aluru NR; Sinitskii A; Crommie MF
    Small; 2024 Feb; ():e2400473. PubMed ID: 38412424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons.
    Pan M; Girão EC; Jia X; Bhaviripudi S; Li Q; Kong J; Meunier V; Dresselhaus MS
    Nano Lett; 2012 Apr; 12(4):1928-33. PubMed ID: 22364382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Confined Hydrogenation of Graphene Nanoribbons.
    Sung YY; Vejayan H; Baddeley CJ; Richardson NV; Grillo F; Schaub R
    ACS Nano; 2022 Jul; 16(7):10281-10291. PubMed ID: 35786912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Length-Dependent Evolution of Type II Heterojunctions in Bottom-Up-Synthesized Graphene Nanoribbons.
    Rizzo DJ; Wu M; Tsai HZ; Marangoni T; Durr RA; Omrani AA; Liou F; Bronner C; Joshi T; Nguyen GD; Rodgers GF; Choi WW; Jørgensen JH; Fischer FR; Louie SG; Crommie MF
    Nano Lett; 2019 May; 19(5):3221-3228. PubMed ID: 31002257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing optical excitations in chevron-like armchair graphene nanoribbons.
    Denk R; Lodi-Rizzini A; Wang S; Hohage M; Zeppenfeld P; Cai J; Fasel R; Ruffieux P; Berger RFJ; Chen Z; Narita A; Feng X; Müllen K; Biagi R; De Renzi V; Prezzi D; Ruini A; Ferretti A
    Nanoscale; 2017 Nov; 9(46):18326-18333. PubMed ID: 29143040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth Optimization and Device Integration of Narrow-Bandgap Graphene Nanoribbons.
    Borin Barin G; Sun Q; Di Giovannantonio M; Du CZ; Wang XY; Llinas JP; Mutlu Z; Lin Y; Wilhelm J; Overbeck J; Daniels C; Lamparski M; Sahabudeen H; Perrin ML; Urgel JI; Mishra S; Kinikar A; Widmer R; Stolz S; Bommert M; Pignedoli C; Feng X; Calame M; Müllen K; Narita A; Meunier V; Bokor J; Fasel R; Ruffieux P
    Small; 2022 Aug; 18(31):e2202301. PubMed ID: 35713270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.