These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32996646)
1. Induced Production, Synthesis, and Immunomodulatory Action of Clostrisulfone, a Diarylsulfone from Clostridium acetobutylicum. Neuwirth T; Letzel AC; Tank C; Ishida K; Cyrulies M; Schmölz L; Lorkowski S; Hertweck C Chemistry; 2020 Dec; 26(68):15855-15858. PubMed ID: 32996646 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. Liu D; Xu J; Wang Y; Chen Y; Shen X; Niu H; Guo T; Ying H J Biotechnol; 2016 Jan; 218():1-12. PubMed ID: 26621081 [TBL] [Abstract][Full Text] [Related]
3. A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Yang Y; Lang N; Zhang L; Wu H; Jiang W; Gu Y Appl Microbiol Biotechnol; 2020 Jun; 104(11):5011-5023. PubMed ID: 32242264 [TBL] [Abstract][Full Text] [Related]
4. Roles of three AbrBs in regulating two-phase Clostridium acetobutylicum fermentation. Xue Q; Yang Y; Chen J; Chen L; Yang S; Jiang W; Gu Y Appl Microbiol Biotechnol; 2016 Nov; 100(21):9081-9089. PubMed ID: 27276910 [TBL] [Abstract][Full Text] [Related]
5. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. Wang Q; Venkataramanan KP; Huang H; Papoutsakis ET; Wu CH BMC Syst Biol; 2013 Nov; 7():120. PubMed ID: 24196194 [TBL] [Abstract][Full Text] [Related]
6. The Small RNA sr8384 Is a Crucial Regulator of Cell Growth in Solventogenic Clostridia. Yang Y; Zhang H; Lang N; Zhang L; Chai C; He H; Jiang W; Gu Y Appl Environ Microbiol; 2020 Jun; 86(13):. PubMed ID: 32358006 [TBL] [Abstract][Full Text] [Related]
7. The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Herman NA; Kim SJ; Li JS; Cai W; Koshino H; Zhang W Nat Commun; 2017 Nov; 8(1):1514. PubMed ID: 29138399 [TBL] [Abstract][Full Text] [Related]
8. The role of PerR in O2-affected gene expression of Clostridium acetobutylicum. Hillmann F; Döring C; Riebe O; Ehrenreich A; Fischer RJ; Bahl H J Bacteriol; 2009 Oct; 191(19):6082-93. PubMed ID: 19648241 [TBL] [Abstract][Full Text] [Related]
9. The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Wietzke M; Bahl H Appl Microbiol Biotechnol; 2012 Nov; 96(3):749-61. PubMed ID: 22576944 [TBL] [Abstract][Full Text] [Related]
10. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. Mao S; Luo Y; Zhang T; Li J; Bao G; Zhu Y; Chen Z; Zhang Y; Li Y; Ma Y J Proteome Res; 2010 Jun; 9(6):3046-61. PubMed ID: 20426490 [TBL] [Abstract][Full Text] [Related]
11. Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum. Vasileva D; Janssen H; Hönicke D; Ehrenreich A; Bahl H Microbiology (Reading); 2012 Jul; 158(Pt 7):1918-1929. PubMed ID: 22556358 [TBL] [Abstract][Full Text] [Related]
12. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Cho C; Lee SY Biotechnol Bioeng; 2017 Feb; 114(2):374-383. PubMed ID: 27531464 [TBL] [Abstract][Full Text] [Related]
13. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Millat T; Janssen H; Bahl H; Fischer RJ; Wolkenhauer O Microb Biotechnol; 2013 Sep; 6(5):526-39. PubMed ID: 23332010 [TBL] [Abstract][Full Text] [Related]
14. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose. Bruder M; Moo-Young M; Chung DA; Chou CP Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995 [TBL] [Abstract][Full Text] [Related]
15. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. Jang YS; Lee JY; Lee J; Park JH; Im JA; Eom MH; Lee J; Lee SH; Song H; Cho JH; Seung do Y; Lee SY mBio; 2012 Oct; 3(5):. PubMed ID: 23093384 [TBL] [Abstract][Full Text] [Related]
16. Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. Cai X; Bennett GN J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1013-25. PubMed ID: 20931261 [TBL] [Abstract][Full Text] [Related]
17. A Quantitative System-Scale Characterization of the Metabolism of Clostridium acetobutylicum. Yoo M; Bestel-Corre G; Croux C; Riviere A; Meynial-Salles I; Soucaille P mBio; 2015 Nov; 6(6):e01808-15. PubMed ID: 26604256 [TBL] [Abstract][Full Text] [Related]
18. Redox-responsive repressor Rex modulates alcohol production and oxidative stress tolerance in Clostridium acetobutylicum. Zhang L; Nie X; Ravcheev DA; Rodionov DA; Sheng J; Gu Y; Yang S; Jiang W; Yang C J Bacteriol; 2014 Nov; 196(22):3949-63. PubMed ID: 25182496 [TBL] [Abstract][Full Text] [Related]
19. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. Hu S; Zheng H; Gu Y; Zhao J; Zhang W; Yang Y; Wang S; Zhao G; Yang S; Jiang W BMC Genomics; 2011 Feb; 12():93. PubMed ID: 21284892 [TBL] [Abstract][Full Text] [Related]
20. Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. Bao G; Wang R; Zhu Y; Dong H; Mao S; Zhang Y; Chen Z; Li Y; Ma Y J Bacteriol; 2011 Sep; 193(18):5007-8. PubMed ID: 21742891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]