These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32996883)

  • 1. New insights on the modeling of the molecular mechanisms underlying neural maps alignment in the midbrain.
    Savier EL; Dunbar J; Cheung K; Reber M
    Elife; 2020 Sep; 9():. PubMed ID: 32996883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New model of retinocollicular mapping predicts the mechanisms of axonal competition and explains the role of reverse molecular signaling during development.
    Grimbert F; Cang J
    J Neurosci; 2012 Jul; 32(28):9755-68. PubMed ID: 22787061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A relative signalling model for the formation of a topographic neural map.
    Reber M; Burrola P; Lemke G
    Nature; 2004 Oct; 431(7010):847-53. PubMed ID: 15483613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular mechanism for the topographic alignment of convergent neural maps.
    Savier E; Eglen SJ; Bathélémy A; Perraut M; Pfrieger FW; Lemke G; Reber M
    Elife; 2017 Mar; 6():. PubMed ID: 28322188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Tyrosine Phosphatase Receptor Type J (PTPRJ) Regulates Retinal Axonal Projections by Inhibiting Eph and Abl Kinases in Mice.
    Yu Y; Shintani T; Takeuchi Y; Shirasawa T; Noda M
    J Neurosci; 2018 Sep; 38(39):8345-8363. PubMed ID: 30082414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic dissection of EphA receptor signaling dynamics during retinotopic mapping.
    Bevins N; Lemke G; Reber M
    J Neurosci; 2011 Jul; 31(28):10302-10. PubMed ID: 21753007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling.
    Brown A; Yates PA; Burrola P; Ortuño D; Vaidya A; Jessell TM; Pfaff SL; O'Leary DD; Lemke G
    Cell; 2000 Jul; 102(1):77-88. PubMed ID: 10929715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ephrin-A/EphA specific co-adaptation as a novel mechanism in topographic axon guidance.
    Fiederling F; Weschenfelder M; Fritz M; von Philipsborn A; Bastmeyer M; Weth F
    Elife; 2017 Jul; 6():. PubMed ID: 28722651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Models of Visual Topographic Map Alignment in the Superior Colliculus.
    Tikidji-Hamburyan RA; El-Ghazawi TA; Triplett JW
    PLoS Comput Biol; 2016 Dec; 12(12):e1005315. PubMed ID: 28027309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping.
    Gebhardt C; Bastmeyer M; Weth F
    Development; 2012 Jan; 139(2):335-45. PubMed ID: 22159582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mouse EphA knockins and knockouts suggests that retinal axons programme target cells to form ordered retinotopic maps.
    Willshaw D
    Development; 2006 Jul; 133(14):2705-17. PubMed ID: 16774998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unifying model for activity-dependent and activity-independent mechanisms predicts complete structure of topographic maps in ephrin-A deficient mice.
    Tsigankov DN; Koulakov AA
    J Comput Neurosci; 2006 Aug; 21(1):101-14. PubMed ID: 16823525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular gradients and development of retinotopic maps.
    McLaughlin T; O'Leary DD
    Annu Rev Neurosci; 2005; 28():327-55. PubMed ID: 16022599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between retinal ganglion axons for targets under the servomechanism model explains abnormal retinocollicular projection of Eph receptor-overexpressing or ephrin-lacking mice.
    Honda H
    J Neurosci; 2003 Nov; 23(32):10368-77. PubMed ID: 14614096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model.
    Sterratt DC
    PLoS One; 2013; 8(6):e67096. PubMed ID: 23826201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive interactions between retinal ganglion axons for tectal targets explain plasticity of retinotectal projection in the servomechanism model of retinotectal mapping.
    Honda H
    Dev Growth Differ; 2004 Oct; 46(5):425-37. PubMed ID: 15606488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular guidance of retinotopic map development in the midbrain.
    Triplett JW
    Curr Opin Neurobiol; 2014 Feb; 24(1):7-12. PubMed ID: 24492072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple model can unify a broad range of phenomena in retinotectal map development.
    Simpson HD; Goodhill GJ
    Biol Cybern; 2011 Feb; 104(1-2):9-29. PubMed ID: 21340602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of retinotectal maps: a review of models based on molecular gradients.
    Goodhill GJ; Xu J
    Network; 2005 Mar; 16(1):5-34. PubMed ID: 16353341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity.
    O'Leary DD; McLaughlin T
    Prog Brain Res; 2005; 147():43-65. PubMed ID: 15581697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.