BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32996947)

  • 1. Synthetic strategies to incorporate Ru-terpyridyl water oxidation catalysts into MOFs: direct synthesis
    Liseev T; Howe A; Hoque MA; Gimbert-SuriƱach C; Llobet A; Ott S
    Dalton Trans; 2020 Oct; 49(39):13753-13759. PubMed ID: 32996947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker.
    Howe A; Liseev T; Gil-Sepulcre M; Gimbert-SuriƱach C; Benet-Buchholz J; Llobet A; Ott S
    Mater Adv; 2022 May; 3(10):4227-4234. PubMed ID: 35693428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis.
    Wang C; Xie Z; deKrafft KE; Lin W
    J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Thiol Decoration in a Redox-Active UiO-66-(SH)
    Chowdhury S; Sharma P; Kundu K; Das PP; Rathi P; Siril PF
    Inorg Chem; 2023 Mar; 62(9):3875-3885. PubMed ID: 36802595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical alcohol oxidation by mixed-linker metal-organic frameworks.
    Lin S; Cairnie DR; Davis D; Chakraborty A; Cai M; Morris AJ
    Faraday Discuss; 2021 Feb; 225():371-383. PubMed ID: 33107542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Exchange of Achiral Linkers with Chiral Linkers in Zr-Based UiO-68 Metal-Organic Framework.
    Tan C; Han X; Li Z; Liu Y; Cui Y
    J Am Chem Soc; 2018 Nov; 140(47):16229-16236. PubMed ID: 30392361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoexcitation of Fe
    Ezhov R; Ravari AK; Palenik M; Loomis A; Meira DM; Savikhin S; Pushkar Y
    ChemSusChem; 2023 Mar; 16(5):e202202124. PubMed ID: 36479638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Investigations of the Transition between Framework Topologies in Ce/Zr-MOFs.
    Jacobsen J; Reinsch H; Stock N
    Inorg Chem; 2018 Oct; 57(20):12820-12826. PubMed ID: 30256108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Strategy for Efficient Charge Separation and High Photoactivity of Mixed-Linker MOFs.
    Chen TF; Wang LY; Wang YF; Gao H; He J; Wang G; Meng XF; Wu YS; Deng YH; Wan CQ
    ACS Appl Mater Interfaces; 2021 May; 13(17):20897-20905. PubMed ID: 33896173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zr-Metal-Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols.
    Zhuang JL; Liu XY; Zhang Y; Wang C; Mao HL; Guo J; Du X; Zhu SB; Ren B; Terfort A
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3034-3043. PubMed ID: 30585485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Redox "Non-Innocent" Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal-Organic Frameworks.
    Zhang X; Vermeulen NA; Huang Z; Cui Y; Liu J; Krzyaniak MD; Li Z; Noh H; Wasielewski MR; Delferro M; Farha OK
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):635-641. PubMed ID: 29278492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative Sieving and Functionalization of Zr Metal-Organic Frameworks through Insertion and Post-Modification of Auxiliary Linkers.
    Zhang L; Yuan S; Fan W; Pang J; Li F; Guo B; Zhang P; Sun D; Zhou HC
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22390-22397. PubMed ID: 31039305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.
    Islamoglu T; Goswami S; Li Z; Howarth AJ; Farha OK; Hupp JT
    Acc Chem Res; 2017 Apr; 50(4):805-813. PubMed ID: 28177217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic water oxidation by a molecular catalyst incorporated into a metal-organic framework thin film.
    Johnson BA; Bhunia A; Ott S
    Dalton Trans; 2017 Jan; 46(5):1382-1388. PubMed ID: 27845800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrofitting Zr-Oxo Nodes of UiO-66 by Ru Single Atoms to Boost Methane Hydroxylation with Nearly Total Selectivity.
    Fang G; Wei F; Lin J; Zhou Y; Sun L; Shang X; Lin S; Wang X
    J Am Chem Soc; 2023 Jun; 145(24):13169-13180. PubMed ID: 37279334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zr-Based Metal-Organic Frameworks with Intrinsic Peroxidase-Like Activity for Ultradeep Oxidative Desulfurization: Mechanism of H
    Zheng HQ; Zeng YN; Chen J; Lin RG; Zhuang WE; Cao R; Lin ZJ
    Inorg Chem; 2019 May; 58(10):6983-6992. PubMed ID: 31041865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iodine Capture Using Zr-Based Metal-Organic Frameworks (Zr-MOFs): Adsorption Performance and Mechanism.
    Chen P; He X; Pang M; Dong X; Zhao S; Zhang W
    ACS Appl Mater Interfaces; 2020 May; 12(18):20429-20439. PubMed ID: 32255599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.