These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 32997619)
1. Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot. Li X; Yang Q; Song R IEEE Trans Biomed Eng; 2021 Apr; 68(4):1351-1359. PubMed ID: 32997619 [TBL] [Abstract][Full Text] [Related]
2. Fuzzy Adaptive Passive Control Strategy Design for Upper-Limb End-Effector Rehabilitation Robot. Hu Y; Meng J; Li G; Zhao D; Feng G; Zuo G; Liu Y; Zhang J; Shi C Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112385 [TBL] [Abstract][Full Text] [Related]
3. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force]. Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608 [TBL] [Abstract][Full Text] [Related]
4. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot. Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. Niu J; Yang Q; Chen G; Song R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896 [TBL] [Abstract][Full Text] [Related]
6. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
7. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study. Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427 [TBL] [Abstract][Full Text] [Related]
8. Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study. Sheng B; Tang L; Moosman OM; Deng C; Xie S; Zhang Y Australas Phys Eng Sci Med; 2019 Sep; 42(3):789-801. PubMed ID: 31372900 [TBL] [Abstract][Full Text] [Related]
9. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of upper extremity robot-assistances in subacute and chronic stroke subjects. Ziherl J; Novak D; Olenšek A; Mihelj M; Munih M J Neuroeng Rehabil; 2010 Oct; 7():52. PubMed ID: 20955566 [TBL] [Abstract][Full Text] [Related]
11. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
12. The Role of Robotic Path Assistance and Weight Support in Facilitating 3D Movements in Individuals With Poststroke Hemiparesis. Raghavan P; Bilaloglu S; Ali SZ; Jin X; Aluru V; Buckley MC; Tang A; Yousefi A; Stone J; Agrawal SK; Lu Y Neurorehabil Neural Repair; 2020 Feb; 34(2):134-147. PubMed ID: 31959040 [No Abstract] [Full Text] [Related]
13. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation. Yang T; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825 [TBL] [Abstract][Full Text] [Related]
14. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
15. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
16. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181 [TBL] [Abstract][Full Text] [Related]
17. Multi-mode adaptive control strategy for a lower limb rehabilitation robot. Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926 [TBL] [Abstract][Full Text] [Related]
18. Performance-based robotic assistance during rhythmic arm exercises. Leconte P; Ronsse R J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806 [TBL] [Abstract][Full Text] [Related]
19. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
20. A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation. Luo L; Peng L; Wang C; Hou ZG IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3433-3443. PubMed ID: 30736008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]