These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 32997673)
1. Integrating functional connectivity in designing networks of protected areas under climate change: A caribou case-study. Bauduin S; Cumming SG; St-Laurent MH; McIntire EJB PLoS One; 2020; 15(9):e0238821. PubMed ID: 32997673 [TBL] [Abstract][Full Text] [Related]
2. Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada. Johnson CA; Drever CR; Kirby P; Neave E; Martin AE Sci Rep; 2022 Oct; 12(1):17067. PubMed ID: 36224283 [TBL] [Abstract][Full Text] [Related]
3. Compensatory conservation measures for an endangered caribou population under climate change. Bauduin S; McIntire E; St-Laurent MH; Cumming SG Sci Rep; 2018 Nov; 8(1):16438. PubMed ID: 30401921 [TBL] [Abstract][Full Text] [Related]
5. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Albert CH; Rayfield B; Dumitru M; Gonzalez A Conserv Biol; 2017 Dec; 31(6):1383-1396. PubMed ID: 28383758 [TBL] [Abstract][Full Text] [Related]
6. Evaluating the connectivity of a protected areas' network under the prism of global change: the efficiency of the European Natura 2000 network for four birds of prey. Mazaris AD; Papanikolaou AD; Barbet-Massin M; Kallimanis AS; Jiguet F; Schmeller DS; Pantis JD PLoS One; 2013; 8(3):e59640. PubMed ID: 23527237 [TBL] [Abstract][Full Text] [Related]
7. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change. Struebig MJ; Wilting A; Gaveau DLA; Meijaard E; Smith RJ; ; Fischer M; Metcalfe K; Kramer-Schadt S Curr Biol; 2015 Feb; 25(3):372-378. PubMed ID: 25619764 [TBL] [Abstract][Full Text] [Related]
8. Predicting areas important for ecological connectivity throughout Canada. Pither R; O'Brien P; Brennan A; Hirsh-Pearson K; Bowman J PLoS One; 2023; 18(2):e0281980. PubMed ID: 36812251 [TBL] [Abstract][Full Text] [Related]
9. Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap. Martin AE; Neave E; Kirby P; Drever CR; Johnson CA Sci Rep; 2022 Jul; 12(1):11895. PubMed ID: 35831324 [TBL] [Abstract][Full Text] [Related]
10. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Carroll C; Ray JC Glob Chang Biol; 2021 Aug; 27(15):3395-3414. PubMed ID: 33852186 [TBL] [Abstract][Full Text] [Related]
11. Influence of In-Situ Oil Sands Development on Caribou (Rangifer tarandus) Movement. Muhly T; Serrouya R; Neilson E; Li H; Boutin S PLoS One; 2015; 10(9):e0136933. PubMed ID: 26349062 [TBL] [Abstract][Full Text] [Related]
12. Salvage logging following fires can minimize boreal caribou habitat loss while maintaining forest quotas: An example of compensatory cumulative effects. Beguin J; McIntire EJ; Raulier F J Environ Manage; 2015 Nov; 163():234-45. PubMed ID: 26321533 [TBL] [Abstract][Full Text] [Related]
13. A multiscale network analysis of protected-area connectivity for mammals in the United States. Minor ES; Lookingbill TR Conserv Biol; 2010 Dec; 24(6):1549-58. PubMed ID: 20666801 [TBL] [Abstract][Full Text] [Related]
14. Searching for Networks: Ecological Connectivity for Amphibians Under Climate Change. Campos FS; Lourenço-de-Moraes R; Ruas DS; Mira-Mendes CV; Franch M; Llorente GA; Solé M; Cabral P Environ Manage; 2020 Jan; 65(1):46-61. PubMed ID: 31832730 [TBL] [Abstract][Full Text] [Related]
15. Lowering the rate of timber harvesting to mitigate impacts of climate change on boreal caribou habitat quality in eastern Canada. St-Laurent MH; Boulanger Y; Cyr D; Manka F; Drapeau P; Gauthier S Sci Total Environ; 2022 Sep; 838(Pt 3):156244. PubMed ID: 35636534 [TBL] [Abstract][Full Text] [Related]
16. Explaining geographic gradients in winter selection of landscapes by boreal caribou with implications under global changes in Eastern Canada. Beguin J; McIntire EJ; Fortin D; Cumming SG; Raulier F; Racine P; Dussault C PLoS One; 2013; 8(10):e78510. PubMed ID: 24194942 [TBL] [Abstract][Full Text] [Related]
17. Expanding China's protected areas network to enhance resilience of climate connectivity. Xu D; Peng J; Dong J; Jiang H; Liu M; Luo Y; Xu Z Sci Bull (Beijing); 2024 Jul; 69(14):2273-2280. PubMed ID: 38724302 [TBL] [Abstract][Full Text] [Related]
18. Wild, connected, and diverse: building a more resilient system of protected areas. Belote RT; Dietz MS; Jenkins CN; McKinley PS; Irwin GH; Fullman TJ; Leppi JC; Aplet GH Ecol Appl; 2017 Jun; 27(4):1050-1056. PubMed ID: 28263450 [TBL] [Abstract][Full Text] [Related]
19. Weak biodiversity connectivity in the European network of no-take marine protected areas. Assis J; Fragkopoulou E; Serrão EA; Horta E Costa B; Gandra M; Abecasis D Sci Total Environ; 2021 Jun; 773():145664. PubMed ID: 33940752 [TBL] [Abstract][Full Text] [Related]
20. Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Ye X; Yu X; Yu C; Tayibazhaer A; Xu F; Skidmore AK; Wang T Sci Total Environ; 2018 Jan; 612():775-787. PubMed ID: 28866405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]