These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32997834)

  • 1. Biomechanical comparison of ex vivo lumbar vertebral fracture luxations stabilized with tension band or polymethylmethacrylate in cats.
    Beer P; Knell SC; Pozzi A; Park BH
    Vet Surg; 2020 Dec; 49(8):1517-1526. PubMed ID: 32997834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Comparison of Locking Compression Plate versus Positive Profile Pins and Polymethylmethacrylate for Stabilization of the Canine Lumbar Vertebrae.
    Sturges BK; Kapatkin AS; Garcia TC; Anwer C; Fukuda S; Hitchens PL; Wisner T; Hayashi K; Stover SM
    Vet Surg; 2016 Apr; 45(3):309-18. PubMed ID: 27007649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surgical repair of thoraco-lumbar vertebral fracture-luxations in eight cats using screws and polymethylmethacrylate fixation.
    Vallefuoco R; Manassero M; Leperlier D; Scotti S; Viateau V; Moissonnier P
    Vet Comp Orthop Traumatol; 2014; 27(4):306-12. PubMed ID: 24763998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical comparison between pins and polymethylmethacrylate and the SOP locking plate system to stabilize canine lumbosacral fracture-luxation in flexion and extension.
    Nel JJ; Kat CJ; Coetzee GL; van Staden PJ
    Vet Surg; 2017 Aug; 46(6):789-796. PubMed ID: 28543304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation.
    Reis MT; Reyes PM; Bse ; Altun I; Newcomb AG; Singh V; Chang SW; Kelly BP; Crawford NR
    J Neurosurg Spine; 2016 Dec; 25(6):720-726. PubMed ID: 27391398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study.
    Techy F; Mageswaran P; Colbrunn RW; Bonner TF; McLain RF
    Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical advantage of the index-level pedicle screw in unstable thoracolumbar junction fractures.
    Baaj AA; Reyes PM; Yaqoobi AS; Uribe JS; Vale FL; Theodore N; Sonntag VK; Crawford NR
    J Neurosurg Spine; 2011 Feb; 14(2):192-7. PubMed ID: 21214311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical analysis of four- versus six-screw constructs for short-segment pedicle screw and rod instrumentation of unstable thoracolumbar fractures.
    Norton RP; Milne EL; Kaimrajh DN; Eismont FJ; Latta LL; Williams SK
    Spine J; 2014 Aug; 14(8):1734-9. PubMed ID: 24462814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage.
    Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF
    J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques.
    Cain CM; Schleicher P; Gerlach R; Pflugmacher R; Scholz M; Kandziora F
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2631-6. PubMed ID: 16319749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine.
    Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD
    J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-segment fixation of lumbar burst fractures using pedicle fixation at the level of the fracture.
    Mahar A; Kim C; Wedemeyer M; Mitsunaga L; Odell T; Johnson B; Garfin S
    Spine (Phila Pa 1976); 2007 Jun; 32(14):1503-7. PubMed ID: 17572619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical Analysis of Pedicle Screw Fixation for Thoracolumbar Burst Fractures.
    McDonnell M; Shah KN; Paller DJ; Thakur NA; Koruprolu S; Palumbo MA; Daniels AH
    Orthopedics; 2016 May; 39(3):e514-8. PubMed ID: 27135451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical testing of the lumbar facet interference screw.
    Kandziora F; Schleicher P; Scholz M; Pflugmacher R; Eindorf T; Haas NP; Pavlov PW
    Spine (Phila Pa 1976); 2005 Jan; 30(2):E34-9. PubMed ID: 15644745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanical stability of unilateral pedicle screw fixation on cadaveric model simulated two-level posterior lumbar interbody fusion].
    Dong JW; Feng F; Zhao WD; Rong LM; Liu XM
    Zhonghua Wai Ke Za Zhi; 2011 May; 49(5):436-9. PubMed ID: 21733402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does Lumbopelvic Fixation Add Stability? A Cadaveric Biomechanical Analysis of an Unstable Pelvic Fracture Model.
    Jazini E; Klocke N; Tannous O; Johal HS; Hao J; Salloum K; Gelb DE; Nascone JW; Belin E; Hoshino CM; Hussain M; OʼToole RV; Bucklen B; Ludwig SC
    J Orthop Trauma; 2017 Jan; 31(1):37-46. PubMed ID: 27997465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biomechanical evaluation of posterior instrumentation for lumbar burst fracture: comparison of two internal devices].
    Freslon M; Mosnier T; Gayet LE; Skalli W
    Rev Chir Orthop Reparatrice Appar Mot; 2007 May; 93(3):213-21. PubMed ID: 17534203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro analysis of anterior and posterior fixation in an experimental unstable burst fracture model.
    Kallemeier PM; Beaubien BP; Buttermann GR; Polga DJ; Wood KB
    J Spinal Disord Tech; 2008 May; 21(3):216-24. PubMed ID: 18458594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model.
    Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ
    Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.