These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32998103)

  • 1. Biomechanical effects of the novel series LVAD on the aortic valve.
    Gao B; Kang Y; Zhang Q; Chang Y
    Comput Methods Programs Biomed; 2020 Dec; 197():105763. PubMed ID: 32998103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2016 Jul; 22():2576-88. PubMed ID: 27440399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Analysis of Intra-Ventricular Flow Pattern Under Partial and Full Support of BJUT-II VAD.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2017 Feb; 23():1043-1054. PubMed ID: 28239142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study.
    Gu K; Gao B; Chang Y; Zeng Y
    Med Sci Monit; 2016 Jul; 22():2284-94. PubMed ID: 27363758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hemodynamic effect of phase differences between the BJUT-II ventricular assist device and native heart on the cardiovascular system.
    Gu K; Gao B; Chang Y; Zeng Y
    Artif Organs; 2014 Nov; 38(11):914-23. PubMed ID: 24712827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The study on hemodynamic effect of varied support models of BJUT-II VAD on coronary artery: a primary CFD study.
    Zhang Q; Gao B; Gu K; Chang Y; Xu J
    ASAIO J; 2014; 60(6):643-51. PubMed ID: 25373559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of captopril on the performance of the control strategies of BJUT-II VAD.
    Gu K; Gao B; Chang Y; Zeng Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):123. PubMed ID: 28155689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Left Ventricular Assist Device Support Level on the Biomechanical States of Aortic Valve.
    Zhang Q; Gao B; Yu C
    Med Sci Monit; 2018 Apr; 24():2003-2017. PubMed ID: 29618718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design.
    Callington A; Long Q; Mohite P; Simon A; Mittal TK
    J Thorac Cardiovasc Surg; 2015 Sep; 150(3):696-704. PubMed ID: 26092505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic effects of support modes of LVADs on the aortic valve.
    Gao B; Zhang Q; Chang Y
    Med Biol Eng Comput; 2019 Dec; 57(12):2657-2671. PubMed ID: 31707689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical effects of the working modes of LVADs on the aortic valve: A primary numerical study.
    Gao B; Zhang Q
    Comput Methods Programs Biomed; 2020 Sep; 193():105512. PubMed ID: 32344270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of the aortic valve in the continuous flow VAD-assisted heart.
    May-Newman K; Enriquez-Almaguer L; Posuwattanakul P; Dembitsky W
    ASAIO J; 2010; 56(4):301-8. PubMed ID: 20559132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmed Speed Reduction Enables Aortic Valve Opening and Increased Pulsatility in the LVAD-Assisted Heart.
    Tolpen S; Janmaat J; Reider C; Kallel F; Farrar D; May-Newman K
    ASAIO J; 2015; 61(5):540-7. PubMed ID: 25961849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The study on hemodynamic effect of series type LVAD on aortic blood flow pattern: a primary numerical study.
    Zhang Q; Gao B; Chang Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):163. PubMed ID: 28155672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic study of the effect of the geometric height of leaflets on the performance of the aortic valve under aortic valve reconstruction.
    Ma X; Gao B; Tao L; Ding J; Li S; Qiao A; Chang Y
    J Thorac Dis; 2022 May; 14(5):1515-1525. PubMed ID: 35693620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic pressure-flow curve analysis of the native heart and left ventricular assist device for full and partial bypass conditions.
    May-Newman K
    Artif Organs; 2022 Jun; 46(6):1077-1085. PubMed ID: 34932239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aortic Valve Function Under Support of a Left Ventricular Assist Device: Continuous vs. Dynamic Speed Support.
    Bozkurt S; van de Vosse FN; Rutten MC
    Ann Biomed Eng; 2015 Aug; 43(8):1727-37. PubMed ID: 25480480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helical Flow Component of Left Ventricular Assist Devices (LVADs) Outflow Improves Aortic Hemodynamic States.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2018 Feb; 24():869-879. PubMed ID: 29431154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling aortic valve closure under the action of a ventricular assist device.
    Alonazi KA; Savkin AV; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():679-82. PubMed ID: 24109778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk.
    Osorio AF; Osorio R; Ceballos A; Tran R; Clark W; Divo EA; Argueta-Morales IR; Kassab AJ; DeCampli WM
    Comput Methods Biomech Biomed Engin; 2013; 16(6):622-38. PubMed ID: 22185643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.