BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32998467)

  • 1. Membrane Interaction of Ibuprofen with Cholesterol-Containing Lipid Membranes.
    Kremkow J; Luck M; Huster D; Müller P; Scheidt HA
    Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32998467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen.
    Alsop RJ; Armstrong CL; Maqbool A; Toppozini L; Dies H; Rheinstädter MC
    Soft Matter; 2015 Jun; 11(24):4756-67. PubMed ID: 25915907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer.
    Khajeh A; Modarress H
    Biochim Biophys Acta; 2014 Oct; 1838(10):2431-8. PubMed ID: 24911406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the ibuprofen molecule in model lipid membranes revealed by spin-label-enhanced NMR relaxation.
    Kashnik AS; Selyutina OY; Baranov DS; Polyakov NE; Dzuba SA
    Biochim Biophys Acta Biomembr; 2023 Dec; 1865(8):184215. PubMed ID: 37633627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of cholesterol on membrane dynamics on different timescales in lipid bilayers from fast field-cycling NMR relaxometry studies of unilamellar vesicles.
    Fraenza CC; Meledandri CJ; Anoardo E; Brougham DF
    Chemphyschem; 2014 Feb; 15(3):425-35. PubMed ID: 24482248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies.
    Ferreira TM; Coreta-Gomes F; Ollila OH; Moreno MJ; Vaz WL; Topgaard D
    Phys Chem Chem Phys; 2013 Feb; 15(6):1976-89. PubMed ID: 23258433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1.
    Buffy JJ; McCormick MJ; Wi S; Waring A; Lehrer RI; Hong M
    Biochemistry; 2004 Aug; 43(30):9800-12. PubMed ID: 15274634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordering of Saturated and Unsaturated Lipid Membranes near Their Phase Transitions Induced by an Amphiphilic Cyclodextrin and Cholesterol.
    Roux M; Bonnet V; Djedaïni-Pilard F
    Langmuir; 2019 Nov; 35(44):14376-14387. PubMed ID: 31564102
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Schmidt ML; Davis JH
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183196. PubMed ID: 31958437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane composition determines pardaxin's mechanism of lipid bilayer disruption.
    Hallock KJ; Lee DK; Omnaas J; Mosberg HI; Ramamoorthy A
    Biophys J; 2002 Aug; 83(2):1004-13. PubMed ID: 12124282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy.
    Urbina JA; Pekerar S; Le HB; Patterson J; Montez B; Oldfield E
    Biochim Biophys Acta; 1995 Sep; 1238(2):163-76. PubMed ID: 7548131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of oxidised phospholipids and cholesterol on the biophysical properties of POPC bilayers.
    Schumann-Gillett A; O'Mara ML
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):210-219. PubMed ID: 30053406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer.
    Sharma VK; Mamontov E; Anunciado DB; O'Neill H; Urban VS
    Soft Matter; 2015 Sep; 11(34):6755-67. PubMed ID: 26212615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Losartan's affinity to fluid bilayers modulates lipid-cholesterol interactions.
    Hodzic A; Zoumpoulakis P; Pabst G; Mavromoustakos T; Rappolt M
    Phys Chem Chem Phys; 2012 Apr; 14(14):4780-8. PubMed ID: 22395854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of various cholesterol 'ancestors' with lipid membranes: a 2H-NMR study on oriented bilayers.
    Krajewski-Bertrand MA; Milon A; Nakatani Y; Ourisson G
    Biochim Biophys Acta; 1992 Apr; 1105(2):213-20. PubMed ID: 1586660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes.
    Lipinski K; McKay MJ; Afrose F; Martfeld AN; Koeppe RE; Greathouse DV
    Chembiochem; 2019 Nov; 20(21):2784-2792. PubMed ID: 31150136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome.
    Gaede HC; Gawrisch K
    Biophys J; 2003 Sep; 85(3):1734-40. PubMed ID: 12944288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition.
    Scheidt HA; Haralampiev I; Theisgen S; Schirbel A; Sbiera S; Huster D; Kroiss M; Müller P
    Mol Cell Endocrinol; 2016 Jun; 428():68-81. PubMed ID: 27002491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.