These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32998478)

  • 1. Groundwater Arsenic Distribution in India by Machine Learning Geospatial Modeling.
    Podgorski J; Wu R; Chakravorty B; Polya DA
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32998478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms.
    Saha A; Pal SC; Chowdhuri I; Roy P; Chakrabortty R
    Environ Pollut; 2022 Dec; 314():120203. PubMed ID: 36150620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh - Machine learning spatial prediction modeling and comparison with arsenic.
    Podgorski J; Araya D; Berg M
    Sci Total Environ; 2022 Aug; 833():155131. PubMed ID: 35405246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning approach for assessment of arsenic levels using physicochemical properties of water, soil, elevation, and land cover.
    Kumar S; Pati J
    Environ Monit Assess; 2023 May; 195(6):641. PubMed ID: 37145302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global threat of arsenic in groundwater.
    Podgorski J; Berg M
    Science; 2020 May; 368(6493):845-850. PubMed ID: 32439786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of groundwater arsenic contamination using machine learning in Varanasi, Uttar Pradesh, India.
    Kumar S; Pati J
    J Water Health; 2022 May; 20(5):829-848. PubMed ID: 35635776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning.
    Chakraborty M; Sarkar S; Mukherjee A; Shamsudduha M; Ahmed KM; Bhattacharya A; Mitra A
    Sci Total Environ; 2020 Dec; 748():141107. PubMed ID: 33113690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental tracers and groundwater residence time indicators reveal controls of arsenic accumulation rates beneath a rapidly developing urban area in Patna, India.
    Richards LA; Kumari R; Parashar N; Kumar A; Lu C; Wilson G; Lapworth D; Niasar VJ; Ghosh A; Chakravorty B; Krause S; Polya DA; Gooddy DC
    J Contam Hydrol; 2022 Aug; 249():104043. PubMed ID: 35767908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the Distribution of Arsenic in Groundwater by a Geospatial Machine Learning Technique in the Two Most Affected Districts of Assam, India: The Public Health Implications.
    Nath B; Chowdhury R; Ni-Meister W; Mahanta C
    Geohealth; 2022 Mar; 6(3):e2021GH000585. PubMed ID: 35340282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India.
    Wu R; Podgorski J; Berg M; Polya DA
    Environ Geochem Health; 2021 Jul; 43(7):2649-2664. PubMed ID: 32653966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective.
    Kumar P; Kumar M; Ramanathan AL; Tsujimura M
    Environ Geochem Health; 2010 Apr; 32(2):129-46. PubMed ID: 19551476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Groundwater vulnerability assessment of elevated arsenic in Gangetic plain of West Bengal, India; Using primary information, lithological transport, state-of-the-art approaches.
    Mishra D; Chakrabortty R; Sen K; Pal SC; Mondal NK
    J Contam Hydrol; 2023 May; 256():104195. PubMed ID: 37186993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling.
    Mukherjee A; Sarkar S; Chakraborty M; Duttagupta S; Bhattacharya A; Saha D; Bhattacharya P; Mitra A; Gupta S
    Sci Total Environ; 2021 Mar; 759():143511. PubMed ID: 33250253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India.
    Khan MU; Rai N
    Environ Geochem Health; 2023 May; 45(5):2099-2115. PubMed ID: 35809199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic pollution and associated human health hazards in Rupnagar district, Punjab, India.
    Krishan G; Ghosh S; Virk HS
    Environ Sci Pollut Res Int; 2023 Jun; 30(26):69258-69273. PubMed ID: 37133669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology.
    Crabbe H; Fletcher T; Close R; Watts MJ; Ander EL; Smedley PL; Verlander NQ; Gregory M; Middleton DRS; Polya DA; Studden M; Leonardi GS
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29194429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Models of Arsenic in Private Wells Throughout the Conterminous United States As a Tool for Exposure Assessment in Human Health Studies.
    Lombard MA; Bryan MS; Jones DK; Bulka C; Bradley PM; Backer LC; Focazio MJ; Silverman DT; Toccalino P; Argos M; Gribble MO; Ayotte JD
    Environ Sci Technol; 2021 Apr; 55(8):5012-5023. PubMed ID: 33729798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches.
    Chakraborti D; Rahman MM; Chatterjee A; Das D; Das B; Nayak B; Pal A; Chowdhury UK; Ahmed S; Biswas BK; Sengupta MK; Lodh D; Samanta G; Chakraborty S; Roy MM; Dutta RN; Saha KC; Mukherjee SC; Pati S; Kar PB
    J Trace Elem Med Biol; 2016 Dec; 38():33-45. PubMed ID: 27238728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.