BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 32998685)

  • 1. Divergence of metabolites in three phylogenetically close Monascus species (M. pilosus, M. ruber, and M. purpureus) based on secondary metabolite biosynthetic gene clusters.
    Higa Y; Kim YS; Altaf-Ul-Amin M; Huang M; Ono N; Kanaya S
    BMC Genomics; 2020 Oct; 21(1):679. PubMed ID: 32998685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the phylogeny and metabolic divergence of
    Zhang Z; Cui M; Chen P; Li J; Mao Z; Mao Y; Li Z; Guo Q; Wang C; Liao X; Liu H
    Front Microbiol; 2023; 14():1199144. PubMed ID: 37303795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus).
    Lin TS; Chiu SH; Chen CC; Lin CH
    J Food Drug Anal; 2023 Mar; 31(1):85-94. PubMed ID: 37224553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the distribution of citrinin biosynthesis related genes among Monascus species.
    Chen YP; Tseng CP; Chien IL; Wang WY; Liaw LL; Yuan GF
    J Agric Food Chem; 2008 Dec; 56(24):11767-72. PubMed ID: 19012408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional regulation contributes more to Monascus pigments diversity in different strains than to DNA sequence variation.
    Guo X; Li Y; Zhang R; Yu J; Ma X; Chen M; Wang Y
    World J Microbiol Biotechnol; 2019 Aug; 35(9):138. PubMed ID: 31451937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monascus secondary metabolites: production and biological activity.
    Patakova P
    J Ind Microbiol Biotechnol; 2013 Feb; 40(2):169-81. PubMed ID: 23179468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening and identification of Monascus strains with high-yield monacolin K and undetectable citrinin by integration of HPLC analysis and pksCT and ctnA genes amplification.
    Li Z; Liu Y; Li Y; Lin F; Wu L
    J Appl Microbiol; 2020 Nov; 129(5):1410-1418. PubMed ID: 32357272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of secondary metabolite gene clusters and chitin biosynthesis pathways of Monascus purpureus with high production of pigment and citrinin based on whole-genome sequencing.
    Zhang S; Zeng X; Lin Q; Liu J
    PLoS One; 2022; 17(6):e0263905. PubMed ID: 35648754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of secondary metabolite biosynthesis in Monascus purpureus via cofactor metabolic engineering strategies.
    Liu J; Wu J; Cai X; Zhang S; Liang Y; Lin Q
    Food Microbiol; 2021 May; 95():103689. PubMed ID: 33397619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supplementary effect of whey components on the monascin productivity of Monascus sp.
    Huang Q; Miyaki N; Li Z; Takahashi Y; Ishizuka S; Hayakawa T; Wakamatsu JI; Kumura H
    J Sci Food Agric; 2023 Jun; 103(8):4234-4241. PubMed ID: 36732039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species.
    Liu A; Juan Chen A; Liu B; Wei Q; Bai J; Hu Y
    Fungal Genet Biol; 2022 May; 160():103687. PubMed ID: 35315337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7.
    Liu Q; Xie N; He Y; Wang L; Shao Y; Zhao H; Chen F
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):285-96. PubMed ID: 24162083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Frequency Magnetic Field of Appropriate Strengths Changed Secondary Metabolite Production and Na
    Xiong X; Zhen Z; Liu Y; Gao M; Wang S; Li L; Zhang J
    Bioelectromagnetics; 2020 May; 41(4):289-297. PubMed ID: 32220027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NaCl Inhibits Citrinin and Stimulates
    Zhen Z; Xiong X; Liu Y; Zhang J; Wang S; Li L; Gao M
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30769930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of global regulator LaeA increases secondary metabolite production in Monascus purpureus.
    Zhang C; Zhang H; Zhu Q; Hao S; Chai S; Li Y; Jiao Z; Shi J; Sun B; Wang C
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3049-3060. PubMed ID: 32043189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mokF gene deletion and overexpression on the Monacolin K metabolism yields of Monascus purpureus.
    Zhang C; Chen M; Yang L; Cheng Y; Qin Y; Zang Y; Wang B; Sun B; Wang C
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):3069-3080. PubMed ID: 35435455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster.
    Balakrishnan B; Karki S; Chiu SH; Kim HJ; Suh JW; Nam B; Yoon YM; Chen CC; Kwon HJ
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6337-45. PubMed ID: 23504076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp.
    Pattanagul P; Pinthong R; Phianmongkhol A; Tharatha S
    Int J Food Microbiol; 2008 Aug; 126(1-2):20-3. PubMed ID: 18538878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor.
    Kongruang S
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):93-9. PubMed ID: 20814729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MptriA, an Acetyltransferase Gene Involved in Pigment Biosynthesis in M. purpureus YY-1.
    Liang B; Du X; Li P; Sun C; Wang S
    J Agric Food Chem; 2018 Apr; 66(16):4129-4138. PubMed ID: 29633617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.