BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32998685)

  • 61. Triton X-100 supplementation regulates growth and secondary metabolite biosynthesis during in-depth extractive fermentation of Monascus purpureus.
    Lu P; Wu A; Zhang S; Bai J; Guo T; Lin Q; Liu J
    J Biotechnol; 2021 Nov; 341():137-145. PubMed ID: 34601020
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Production of Angkak Through Co-Culture of Monascus Purpureus and MONASCUS RUBER.
    Panda BP; Javed S; Ali M
    Braz J Microbiol; 2010 Jul; 41(3):757-64. PubMed ID: 24031553
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Polyaromatic Resin HP-20 Induced Accumulation of Intermediate Azaphilones in
    Lim YJ; Lee DW; Choi JJ; Park SH; Kwon HJ
    J Microbiol Biotechnol; 2019 Jun; 29(6):897-904. PubMed ID: 31091861
    [No Abstract]   [Full Text] [Related]  

  • 64. Insights into Monascus biology at the genetic level.
    Shao Y; Lei M; Mao Z; Zhou Y; Chen F
    Appl Microbiol Biotechnol; 2014 May; 98(9):3911-22. PubMed ID: 24633442
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Variations in Monascus pigment characteristics and biosynthetic gene expression using resting cell culture systems combined with extractive fermentation.
    Chen G; Bei Q; Huang T; Wu Z
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):117-126. PubMed ID: 29098409
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Natural pigment from Monascus: The production and therapeutic significance.
    Chaudhary V; Katyal P; Poonia AK; Kaur J; Puniya AK; Panwar H
    J Appl Microbiol; 2022 Jul; 133(1):18-38. PubMed ID: 34569683
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Deletion of pigR gene in Monascus ruber leads to loss of pigment production.
    Xie N; Liu Q; Chen F
    Biotechnol Lett; 2013 Sep; 35(9):1425-32. PubMed ID: 23690031
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Production of Monacolin K in
    Dai W; Shao Y; Chen F
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33918292
    [No Abstract]   [Full Text] [Related]  

  • 69. Efficient Biosynthesis of Natural Yellow Pigments by Monascus purpureus in a Novel Integrated Fermentation System.
    Lv J; Qian GF; Chen L; Liu H; Xu HX; Xu GR; Zhang BB; Zhang C
    J Agric Food Chem; 2018 Jan; 66(4):918-925. PubMed ID: 29313328
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Disruption of the Chitin Biosynthetic Pathway Results in Significant Changes in the Cell Growth Phenotypes and Biosynthesis of Secondary Metabolites of
    Shu M; Lu P; Liu S; Zhang S; Gong Z; Cai X; Zhou B; Lin Q; Liu J
    J Fungi (Basel); 2022 Aug; 8(9):. PubMed ID: 36135635
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Statistical optimization for Monacolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid-state fermentation.
    Jirasatid S; Nopharatana M; Kitsubun P; Vichitsoonthonkul T; Tongta A
    J Microbiol Biotechnol; 2013 Mar; 23(3):364-74. PubMed ID: 23462010
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods.
    Lin CH; Lin TH; Pan TM
    Food Funct; 2017 Jun; 8(6):2102-2109. PubMed ID: 28608901
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent--monacolin K and antiinflammation agent--monascin.
    Lee CL; Wang JJ; Kuo SL; Pan TM
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1254-62. PubMed ID: 16568313
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biological detoxification of Monascus purpureus pigments by heat-treated Saccharomyces cerevisiae.
    Davoudi Moghadam H; Shahidi F; Tabatabaei Yazdi F; Sarabi Jamab M; Eshaghi Z
    J Sci Food Agric; 2019 Jul; 99(9):4439-4444. PubMed ID: 30866050
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Comparative Transcriptomic Analysis of Key Genes Involved in Citrinin Biosynthesis in
    Huang Y; Yang C; Molnár I; Chen S
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836314
    [No Abstract]   [Full Text] [Related]  

  • 76. Lack of the Histone Methyltransferase Gene Ash2 Results in the Loss of Citrinin Production in Monascus purpureus.
    Chen Y; Liu Y; Zhang J; Li LI; Wang S; Gao M
    J Food Prot; 2020 Apr; 83(4):702-709. PubMed ID: 32221575
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A
    Feng Y; Chen W; Chen F
    Food Sci Biotechnol; 2016; 25(4):1115-1122. PubMed ID: 30263383
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway.
    Huang J; Liao N; Li H
    Int J Biol Macromol; 2018 Apr; 109():950-954. PubMed ID: 29162465
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture.
    Wang JJ; Lee CL; Pan TM
    J Agric Food Chem; 2004 Nov; 52(23):6977-82. PubMed ID: 15537306
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus.
    Shimizu T; Kinoshita H; Ishihara S; Sakai K; Nagai S; Nihira T
    Appl Environ Microbiol; 2005 Jul; 71(7):3453-7. PubMed ID: 16000748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.