These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32998686)

  • 1. Network-based method for regions with statistically frequent interchromosomal interactions at single-cell resolution.
    Bulathsinghalage C; Liu L
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):369. PubMed ID: 32998686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition.
    Flyamer IM; Gassler J; Imakaev M; Brandão HB; Ulianov SV; Abdennur N; Razin SV; Mirny LA; Tachibana-Konwalski K
    Nature; 2017 Apr; 544(7648):110-114. PubMed ID: 28355183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells.
    Ramani V; Deng X; Qiu R; Lee C; Disteche CM; Noble WS; Shendure J; Duan Z
    Methods; 2020 Jan; 170():61-68. PubMed ID: 31536770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data.
    Meng L; Wang C; Shi Y; Luo Q
    Nat Commun; 2021 Jul; 12(1):4369. PubMed ID: 34272403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
    Yu M; Abnousi A; Zhang Y; Li G; Lee L; Chen Z; Fang R; Lagler TM; Yang Y; Wen J; Sun Q; Li Y; Ren B; Hu M
    Nat Methods; 2021 Sep; 18(9):1056-1059. PubMed ID: 34446921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GraphTeams: a method for discovering spatial gene clusters in Hi-C sequencing data.
    Schulz T; Stoye J; Doerr D
    BMC Genomics; 2018 May; 19(Suppl 5):308. PubMed ID: 29745835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms.
    Cardozo Gizzi AM; Cattoni DI; Fiche JB; Espinola SM; Gurgo J; Messina O; Houbron C; Ogiyama Y; Papadopoulos GL; Cavalli G; Lagha M; Nollmann M
    Mol Cell; 2019 Apr; 74(1):212-222.e5. PubMed ID: 30795893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering High-Resolution 3D Chromatin Organization via Capture Hi-C.
    Hauth A; Galupa R; Servant N; Villacorta L; Hauschulz K; van Bemmel JG; Loda A; Heard E
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36314814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.
    Nagano T; Lubling Y; Yaffe E; Wingett SW; Dean W; Tanay A; Fraser P
    Nat Protoc; 2015 Dec; 10(12):1986-2003. PubMed ID: 26540590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
    Tjong H; Li W; Kalhor R; Dai C; Hao S; Gong K; Zhou Y; Li H; Zhou XJ; Le Gros MA; Larabell CA; Chen L; Alber F
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1663-72. PubMed ID: 26951677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing networks for differential analysis of chromatin interactions.
    Liu L; Ruan J
    J Bioinform Comput Biol; 2017 Dec; 15(6):1740008. PubMed ID: 29113562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test.
    Lagler TM; Abnousi A; Hu M; Yang Y; Li Y
    Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data.
    Wang S; Lee S; Chu C; Jain D; Kerpedjiev P; Nelson GM; Walsh JM; Alver BH; Park PJ
    Genome Biol; 2020 Mar; 21(1):73. PubMed ID: 32293513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Chromatin Structures of Mature Gametes and Structural Reprogramming during Mammalian Embryogenesis.
    Ke Y; Xu Y; Chen X; Feng S; Liu Z; Sun Y; Yao X; Li F; Zhu W; Gao L; Chen H; Du Z; Xie W; Xu X; Huang X; Liu J
    Cell; 2017 Jul; 170(2):367-381.e20. PubMed ID: 28709003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrogating Global Chromatin Interaction Network by High-Throughput Chromosome Conformation Capture (Hi-C) in Plants.
    Wang W; Niu L; Hou C
    Methods Mol Biol; 2022; 2484():55-67. PubMed ID: 35461444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions.
    Xiong K; Ma J
    Nat Commun; 2019 Nov; 10(1):5069. PubMed ID: 31699985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.
    Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S
    Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.